These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28796525)

  • 1. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.
    Evans CI; Zolotavin P; Alabastri A; Yang J; Nordlander P; Natelson D
    Nano Lett; 2017 Sep; 17(9):5646-5652. PubMed ID: 28796525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote excitation and detection of surface-enhanced Raman scattering from graphene.
    Coca-López N; Hartmann NF; Mancabelli T; Kraus J; Günther S; Comin A; Hartschuh A
    Nanoscale; 2018 Jun; 10(22):10498-10504. PubMed ID: 29799601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy.
    Li Y; Hu H; Jiang W; Shi J; Halas NJ; Nordlander P; Zhang S; Xu H
    Nano Lett; 2020 May; 20(5):3499-3505. PubMed ID: 32250634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons.
    Benner D; Boneberg J; Nürnberger P; Waitz R; Leiderer P; Scheer E
    Nano Lett; 2014 Sep; 14(9):5218-23. PubMed ID: 25089588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Excitation of Surface Plasmon Polaritons via Paired Slot Antennas for Angstrom Displacement Sensing.
    Zang T; Zang H; Xi Z; Du J; Wang H; Lu Y; Wang P
    Phys Rev Lett; 2020 Jun; 124(24):243901. PubMed ID: 32639811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions.
    Liao S; Zhu Y; Ye Q; Sanders S; Yang J; Alabastri A; Natelson D
    J Phys Chem Lett; 2023 Aug; 14(33):7574-7580. PubMed ID: 37589653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films.
    Wang Y; Liu X; Whitmore D; Xing W; Potma EO
    Opt Express; 2011 Jul; 19(14):13454-63. PubMed ID: 21747501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote activation and detection of up-converted luminescence via surface plasmon polaritons propagating in a silver nanowire.
    Prymaczek A; Cwierzona M; Grzelak J; Kowalska D; Nyk M; Mackowski S; Piatkowski D
    Nanoscale; 2018 Jul; 10(26):12841-12847. PubMed ID: 29947635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a nanotip on a surface for the ultrafast probing of propagating surface plasmons.
    Ahn B; Schötz J; Okell WA; Süßmann F; Förg B; Kim SC; Kling MF; Kim D
    Opt Express; 2016 Jan; 24(1):92-101. PubMed ID: 26832240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressed Transmission of Long-Range Surface Plasmon Polariton by TE-Induced Edge Plasmon.
    Kim G; Lee M
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciting graphene surface plasmon polaritons through light and sound interplay.
    Farhat M; Guenneau S; Bağcı H
    Phys Rev Lett; 2013 Dec; 111(23):237404. PubMed ID: 24476303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediated coupling of surface plasmon polaritons by a moving electron beam.
    Gong S; Hu M; Zhong R; Zhao T; Zhang C; Liu S
    Opt Express; 2017 Oct; 25(21):25919-25928. PubMed ID: 29041254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires.
    Rümke TM; Sánchez-Gil JA; Muskens OL; Borgström MT; Bakkers EP; Gómez Rivas J
    Opt Express; 2008 Mar; 16(7):5013-21. PubMed ID: 18542602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Few-Cycle Surface Plasmon Polaritons.
    Komatsu K; Pápa Z; Jauk T; Bernecker F; Tóth L; Lackner F; Ernst WE; Ditlbacher H; Krenn JR; Ossiander M; Dombi P; Schultze M
    Nano Lett; 2024 Feb; 24(8):2637-2642. PubMed ID: 38345784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY; Cao ZL; Ong HC
    Opt Express; 2013 Jun; 21(12):14674-82. PubMed ID: 23787656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers.
    Simesen P; Søndergaard T; Skovsen E; Fiutowski J; Rubahn HG; Bozhevolnyi SI; Pedersen K
    Opt Express; 2015 Jun; 23(12):16356-63. PubMed ID: 26193608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure.
    Wei H; Tian X; Pan D; Chen L; Jia Z; Xu H
    Nano Lett; 2015 Jan; 15(1):560-4. PubMed ID: 25514318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system.
    Baieva S; Ihalainen JA; Toppari JJ
    J Chem Phys; 2013 Jan; 138(4):044707. PubMed ID: 23387615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Absorption and Efficient Hot-Carrier Photovoltaic Conversion based on Sunlight-induced Non-radiative Decay of Propagating Surface Plasmon Polaritons.
    Hu M; Yang L; Dai H; He S
    Sci Rep; 2017 Jul; 7(1):4809. PubMed ID: 28684766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.