These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28797034)

  • 1. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.
    Higgins I; Stringer S; Schnupp J
    PLoS One; 2017; 12(8):e0180174. PubMed ID: 28797034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Account of the Role of Cochlear Nucleus and Inferior Colliculus in Stabilizing Auditory Nerve Firing for Auditory Category Learning.
    Higgins I; Stringer S; Schnupp J
    Neural Comput; 2018 Jul; 30(7):1801-1829. PubMed ID: 29652586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning cross-modal spatial transformations through spike timing-dependent plasticity.
    Davison AP; Frégnac Y
    J Neurosci; 2006 May; 26(21):5604-15. PubMed ID: 16723517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust and biologically plausible spike pattern recognition network.
    Larson E; Perrone BP; Sen K; Billimoria CP
    J Neurosci; 2010 Nov; 30(46):15566-72. PubMed ID: 21084611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity.
    Lee TP; Buonomano DV
    Neural Comput; 2012 Oct; 24(10):2579-603. PubMed ID: 22845822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance.
    Insanally MN; Albanna BF; Toth J; DePasquale B; Fadaei SS; Gupta T; Lombardi O; Kuchibhotla K; Rajan K; Froemke RC
    Nat Commun; 2024 Jul; 15(1):6023. PubMed ID: 39019848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and disruption of tonotopy in a large-scale model of the auditory cortex.
    Tomková M; Tomek J; Novák O; Zelenka O; Syka J; Brom C
    J Comput Neurosci; 2015 Oct; 39(2):131-53. PubMed ID: 26344164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus.
    Hewitt MJ; Meddis R
    J Acoust Soc Am; 1994 Apr; 95(4):2145-59. PubMed ID: 8201111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus dependent transformations between synaptic and spiking receptive fields in auditory cortex.
    Kim KX; Atencio CA; Schreiner CE
    Nat Commun; 2020 Feb; 11(1):1102. PubMed ID: 32107370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.
    Shim Y; Philippides A; Staras K; Husbands P
    PLoS Comput Biol; 2016 Oct; 12(10):e1005137. PubMed ID: 27760125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural circuit model forming semantic network with exception using spike-timing-dependent plasticity of inhibitory synapses.
    Murakoshi K; Suganuma K
    Biosystems; 2007; 90(3):903-10. PubMed ID: 17643738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns.
    Latorre R; Aguirre C; Rabinovich MI; Varona P
    Front Neural Circuits; 2013; 7():138. PubMed ID: 24046731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.