These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28797067)
1. Potential distribution of pine wilt disease under future climate change scenarios. Hirata A; Nakamura K; Nakao K; Kominami Y; Tanaka N; Ohashi H; Takano KT; Takeuchi W; Matsui T PLoS One; 2017; 12(8):e0182837. PubMed ID: 28797067 [TBL] [Abstract][Full Text] [Related]
2. Predicting the Potential Distribution of Pine Wilt Disease in China under Climate Change. Ouyang X; Chen A; Li Y; Han X; Lin H Insects; 2022 Dec; 13(12):. PubMed ID: 36555057 [TBL] [Abstract][Full Text] [Related]
3. Modeling the distribution of pine wilt disease in China using the ensemble models MaxEnt and CLIMEX. Chen L; Lu W; Lamont BB; Liu Y; Wei P; Xue W; Xiong Z; Tang L; Wang Y; Wang P; Yan Z Ecol Evol; 2024 Sep; 14(9):e70277. PubMed ID: 39301297 [TBL] [Abstract][Full Text] [Related]
4. Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area. Chang T; Hansen AJ; Piekielek N PLoS One; 2014; 9(11):e111669. PubMed ID: 25372719 [TBL] [Abstract][Full Text] [Related]
5. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change. Serra-Varela MJ; Alía R; Pórtoles J; Gonzalo J; Soliño M; Grivet D; Raposo R PLoS One; 2017; 12(2):e0171549. PubMed ID: 28192454 [TBL] [Abstract][Full Text] [Related]
6. Assessing the impact of pine wilt disease on aboveground carbon storage in planted Pinus massoniana Lamb. forests via remote sensing. Wen X; Hong Y; Zhong J; Li L; Ma Q; Hu X; Han X; Guo W; Huang Y; Zhang F Sci Total Environ; 2024 Mar; 914():169906. PubMed ID: 38185163 [TBL] [Abstract][Full Text] [Related]
7. Differential Impact of the Pinewood Nematode on Estorninho M; Chozas S; Mendes A; Colwell F; Abrantes I; Fonseca L; Fernandes P; Costa C; Máguas C; Correia O; Antunes C Front Plant Sci; 2022; 13():841707. PubMed ID: 35360314 [TBL] [Abstract][Full Text] [Related]
8. The future of subalpine forests in the Southern Rocky Mountains: Trajectories for Pinus aristata genetic lineages. Malone SL; Schoettle AW; Coop JD PLoS One; 2018; 13(3):e0193481. PubMed ID: 29554097 [TBL] [Abstract][Full Text] [Related]
9. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: expansion trend and the main driving factors. Xiao Y; Guo Q; Xie N; Yuan G; Liao M; Gui Q; Ding G BMC Ecol Evol; 2024 Apr; 24(1):48. PubMed ID: 38632522 [TBL] [Abstract][Full Text] [Related]
10. Global decline in suitable habitat for Angiostrongylus ( = Parastrongylus) cantonensis: the role of climate change. York EM; Butler CJ; Lord WD PLoS One; 2014; 9(8):e103831. PubMed ID: 25122457 [TBL] [Abstract][Full Text] [Related]
11. Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii). Hirao T; Matsunaga K; Hirakawa H; Shirasawa K; Isoda K; Mishima K; Tamura M; Watanabe A BMC Plant Biol; 2019 Oct; 19(1):424. PubMed ID: 31615405 [TBL] [Abstract][Full Text] [Related]
12. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Sánchez-Salguero R; Camarero JJ; Gutiérrez E; González Rouco F; Gazol A; Sangüesa-Barreda G; Andreu-Hayles L; Linares JC; Seftigen K Glob Chang Biol; 2017 Jul; 23(7):2705-2719. PubMed ID: 27782362 [TBL] [Abstract][Full Text] [Related]
13. Risk assessment framework for pine wilt disease: Estimating the introduction pathways and multispecies interactions among the pine wood nematode, its insect vectors, and hosts in China. Zhao H; Xian X; Yang N; Guo J; Zhao L; Shi J; Liu WX Sci Total Environ; 2023 Dec; 905():167075. PubMed ID: 37714356 [TBL] [Abstract][Full Text] [Related]
14. Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China. Tang X; Yuan Y; Li X; Zhang J Front Plant Sci; 2021; 12():652500. PubMed ID: 33968109 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease. Hu G; Xu X; Wang Y; Lu G; Feeley KJ; Yu M PLoS One; 2012; 7(5):e36432. PubMed ID: 22563499 [TBL] [Abstract][Full Text] [Related]
16. Modeling potential distribution and above-ground biomass of Scots pine (Pinus sylvestris L.) forests in the Inner Anatolian Region, Türkiye. Bulut S; Aytaş İ Environ Monit Assess; 2023 Nov; 195(12):1471. PubMed ID: 37964125 [TBL] [Abstract][Full Text] [Related]
17. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. de Oliveira UDR; Gomes PB; Silva Cordeiro RT; de Lima GV; Pérez CD PLoS One; 2019; 14(5):e0211171. PubMed ID: 31112555 [TBL] [Abstract][Full Text] [Related]
18. How can dry tropical forests respond to climate change? Predictions for key Non-Timber Forest Product species show different trends in India. Saraf PN; Srivastava J; Munoz F; Charles B; Samal P Environ Monit Assess; 2024 Jul; 196(8):727. PubMed ID: 38995471 [TBL] [Abstract][Full Text] [Related]
19. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West. Windmuller-Campione MA; Long JN PLoS One; 2016; 11(8):e0160324. PubMed ID: 27575596 [TBL] [Abstract][Full Text] [Related]
20. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests. Moore JR; Watt MS Glob Chang Biol; 2015 Aug; 21(8):3021-35. PubMed ID: 25703827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]