BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28797067)

  • 1. Potential distribution of pine wilt disease under future climate change scenarios.
    Hirata A; Nakamura K; Nakao K; Kominami Y; Tanaka N; Ohashi H; Takano KT; Takeuchi W; Matsui T
    PLoS One; 2017; 12(8):e0182837. PubMed ID: 28797067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Potential Distribution of Pine Wilt Disease in China under Climate Change.
    Ouyang X; Chen A; Li Y; Han X; Lin H
    Insects; 2022 Dec; 13(12):. PubMed ID: 36555057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area.
    Chang T; Hansen AJ; Piekielek N
    PLoS One; 2014; 9(11):e111669. PubMed ID: 25372719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change.
    Serra-Varela MJ; Alía R; Pórtoles J; Gonzalo J; Soliño M; Grivet D; Raposo R
    PLoS One; 2017; 12(2):e0171549. PubMed ID: 28192454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the impact of pine wilt disease on aboveground carbon storage in planted Pinus massoniana Lamb. forests via remote sensing.
    Wen X; Hong Y; Zhong J; Li L; Ma Q; Hu X; Han X; Guo W; Huang Y; Zhang F
    Sci Total Environ; 2024 Mar; 914():169906. PubMed ID: 38185163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Impact of the Pinewood Nematode on
    Estorninho M; Chozas S; Mendes A; Colwell F; Abrantes I; Fonseca L; Fernandes P; Costa C; Máguas C; Correia O; Antunes C
    Front Plant Sci; 2022; 13():841707. PubMed ID: 35360314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The future of subalpine forests in the Southern Rocky Mountains: Trajectories for Pinus aristata genetic lineages.
    Malone SL; Schoettle AW; Coop JD
    PLoS One; 2018; 13(3):e0193481. PubMed ID: 29554097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: expansion trend and the main driving factors.
    Xiao Y; Guo Q; Xie N; Yuan G; Liao M; Gui Q; Ding G
    BMC Ecol Evol; 2024 Apr; 24(1):48. PubMed ID: 38632522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global decline in suitable habitat for Angiostrongylus ( = Parastrongylus) cantonensis: the role of climate change.
    York EM; Butler CJ; Lord WD
    PLoS One; 2014; 9(8):e103831. PubMed ID: 25122457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii).
    Hirao T; Matsunaga K; Hirakawa H; Shirasawa K; Isoda K; Mishima K; Tamura M; Watanabe A
    BMC Plant Biol; 2019 Oct; 19(1):424. PubMed ID: 31615405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.
    Sánchez-Salguero R; Camarero JJ; Gutiérrez E; González Rouco F; Gazol A; Sangüesa-Barreda G; Andreu-Hayles L; Linares JC; Seftigen K
    Glob Chang Biol; 2017 Jul; 23(7):2705-2719. PubMed ID: 27782362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment framework for pine wilt disease: Estimating the introduction pathways and multispecies interactions among the pine wood nematode, its insect vectors, and hosts in China.
    Zhao H; Xian X; Yang N; Guo J; Zhao L; Shi J; Liu WX
    Sci Total Environ; 2023 Dec; 905():167075. PubMed ID: 37714356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China.
    Tang X; Yuan Y; Li X; Zhang J
    Front Plant Sci; 2021; 12():652500. PubMed ID: 33968109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.
    Hu G; Xu X; Wang Y; Lu G; Feeley KJ; Yu M
    PLoS One; 2012; 7(5):e36432. PubMed ID: 22563499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling potential distribution and above-ground biomass of Scots pine (Pinus sylvestris L.) forests in the Inner Anatolian Region, Türkiye.
    Bulut S; Aytaş İ
    Environ Monit Assess; 2023 Nov; 195(12):1471. PubMed ID: 37964125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia.
    de Oliveira UDR; Gomes PB; Silva Cordeiro RT; de Lima GV; Pérez CD
    PLoS One; 2019; 14(5):e0211171. PubMed ID: 31112555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West.
    Windmuller-Campione MA; Long JN
    PLoS One; 2016; 11(8):e0160324. PubMed ID: 27575596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.
    Moore JR; Watt MS
    Glob Chang Biol; 2015 Aug; 21(8):3021-35. PubMed ID: 25703827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality.
    Gonzalez-Benecke CA; Teskey RO; Dinon-Aldridge H; Martin TA
    Glob Chang Biol; 2017 Nov; 23(11):4689-4705. PubMed ID: 28386943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of factors affecting the rooting of pine wilt disease resistant Masson pine (Pinus massoniana) stem cuttings.
    Pan T; Chen XL; Hao YP; Jiang CW; Wang S; Wang JS; Wei Q; Chen SJ; Yu XS; Cheng F; Xu LY
    PLoS One; 2021; 16(9):e0251937. PubMed ID: 34506505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.