BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28797197)

  • 21. Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection.
    Wang W; Nacusi L; Sheaff RJ; Liu X
    Biochemistry; 2005 Nov; 44(44):14553-64. PubMed ID: 16262255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiazolidinediones modulate the expression of beta-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor gamma.
    Wei S; Lin LF; Yang CC; Wang YC; Chang GD; Chen H; Chen CS
    Mol Pharmacol; 2007 Sep; 72(3):725-33. PubMed ID: 17569795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.
    Uehara N; Yoshizawa K; Tsubura A
    Oncol Rep; 2012 Jul; 28(1):105-10. PubMed ID: 22484732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis.
    Masuda TA; Inoue H; Sonoda H; Mine S; Yoshikawa Y; Nakayama K; Nakayama K; Mori M
    Cancer Res; 2002 Jul; 62(13):3819-25. PubMed ID: 12097295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex.
    Wei W; Ayad NG; Wan Y; Zhang GJ; Kirschner MW; Kaelin WG
    Nature; 2004 Mar; 428(6979):194-8. PubMed ID: 15014503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells.
    Lee JG; Kay EP
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):189-96. PubMed ID: 18172092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The tumor suppressor ING3 is degraded by SCF(Skp2)-mediated ubiquitin-proteasome system.
    Chen G; Wang Y; Garate M; Zhou J; Li G
    Oncogene; 2010 Mar; 29(10):1498-508. PubMed ID: 19935701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma.
    Shapira M; Ben-Izhak O; Linn S; Futerman B; Minkov I; Hershko DD
    Cancer; 2005 Apr; 103(7):1336-46. PubMed ID: 15717322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput screening for inhibitors of the Cks1-Skp2 interaction.
    Huang KS; Vassilev LT
    Methods Enzymol; 2005; 399():717-28. PubMed ID: 16338391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence.
    Lin HK; Chen Z; Wang G; Nardella C; Lee SW; Chan CH; Yang WL; Wang J; Egia A; Nakayama KI; Cordon-Cardo C; Teruya-Feldstein J; Pandolfi PP
    Nature; 2010 Mar; 464(7287):374-9. PubMed ID: 20237562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skp2-mediated p27(Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia.
    Auld CA; Fernandes KM; Morrison RF
    J Cell Physiol; 2007 Apr; 211(1):101-11. PubMed ID: 17096381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage.
    Roe JS; Kim HR; Hwang IY; Cho EJ; Youn HD
    Oncogene; 2011 Jul; 30(28):3127-38. PubMed ID: 21358672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts.
    Wirbelauer C; Sutterlüty H; Blondel M; Gstaiger M; Peter M; Reymond F; Krek W
    EMBO J; 2000 Oct; 19(20):5362-75. PubMed ID: 11032804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Foxo3a transcription factor is a negative regulator of Skp2 and Skp2 SCF complex.
    Wu J; Lee SW; Zhang X; Han F; Kwan SY; Yuan X; Yang WL; Jeong YS; Rezaeian AH; Gao Y; Zeng YX; Lin HK
    Oncogene; 2013 Jan; 32(1):78-85. PubMed ID: 22310285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deathproof: new insights on the role of skp2 in tumorigenesis.
    Reed SI
    Cancer Cell; 2008 Feb; 13(2):88-9. PubMed ID: 18242509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SKping cell cycle regulation: role of ubiquitin ligase SKP2 in hematological malignancies.
    William JNG; Dhar R; Gundamaraju R; Sahoo OS; Pethusamy K; Raj AFPAM; Ramasamy S; Alqahtani MS; Abbas M; Karmakar S
    Front Oncol; 2024; 14():1288501. PubMed ID: 38559562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB.
    Lin HK; Wang G; Chen Z; Teruya-Feldstein J; Liu Y; Chan CH; Yang WL; Erdjument-Bromage H; Nakayama KI; Nimer S; Tempst P; Pandolfi PP
    Nat Cell Biol; 2009 Apr; 11(4):420-32. PubMed ID: 19270694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway.
    Lisztwan J; Marti A; Sutterlüty H; Gstaiger M; Wirbelauer C; Krek W
    EMBO J; 1998 Jan; 17(2):368-83. PubMed ID: 9430629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of cell-cycle control: ligating the ligase.
    Lin DI; Diehl JA
    Trends Biochem Sci; 2004 Sep; 29(9):453-5. PubMed ID: 15337116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo.
    Katagiri Y; Hozumi Y; Kondo S
    J Dermatol Sci; 2006 Jun; 42(3):215-24. PubMed ID: 16504485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.