These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
4. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
5. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site. Murataliev MB; Boyer PD Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675 [TBL] [Abstract][Full Text] [Related]
7. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate. Murataliev MB Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210 [TBL] [Abstract][Full Text] [Related]
8. Does the gamma subunit move to an abortive position of ATP hydrolysis when the F1.ADP.Mg complex isomerizes to the inactive F1*.ADP.Mg complex? Allison WS; Jault JM; Dou C; Grodsky NB J Bioenerg Biomembr; 1996 Oct; 28(5):433-8. PubMed ID: 8951090 [TBL] [Abstract][Full Text] [Related]
9. On the rate of F1-ATPase turnover during ATP hydrolysis by the single catalytic site. Evidence that hydrolysis with a slow rate of product release does not occur at the alternating active site. Milgrom YaM ; Murataliev MB FEBS Lett; 1987 Sep; 222(1):32-6. PubMed ID: 2888690 [TBL] [Abstract][Full Text] [Related]
10. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
11. Catalytic site occupancy during ATP hydrolysis by MF1-ATPase. Evidence for alternating high affinity sites during steady-state turnover. Cunningham D; Cross RL J Biol Chem; 1988 Dec; 263(35):18850-6. PubMed ID: 2904435 [TBL] [Abstract][Full Text] [Related]
12. Identification of an exchangeable non-catalytic site on mitochondrial F1-ATPase which is involved in the negative cooperativity of ATP hydrolysis. Edel CM; Hartog AF; Berden JA Biochim Biophys Acta; 1993 May; 1142(3):327-35. PubMed ID: 8481383 [TBL] [Abstract][Full Text] [Related]
13. Evidence for functional heterogeneity among the catalytic sites of the bovine heart mitochondrial F1-ATPase. Bullough DA; Verburg JG; Yoshida M; Allison WS J Biol Chem; 1987 Aug; 262(24):11675-83. PubMed ID: 2887560 [TBL] [Abstract][Full Text] [Related]
14. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites. Bulygin VV; Vinogradov AD FEBS Lett; 1988 Aug; 236(2):497-500. PubMed ID: 2900778 [TBL] [Abstract][Full Text] [Related]
15. When beef-heart mitochondrial F1-ATPase is inhibited by inhibitor protein a nucleotide is trapped in one of the catalytic sites. Milgrom YM Eur J Biochem; 1991 Sep; 200(3):789-95. PubMed ID: 1833193 [TBL] [Abstract][Full Text] [Related]
16. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371 [TBL] [Abstract][Full Text] [Related]
17. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. Mueller DM; Indyk V; McGill L Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510 [TBL] [Abstract][Full Text] [Related]
18. Adenine nucleotide-binding sites on mitochondrial F1-ATPase. Evidence for an adenylate kinase-like orientation of catalytic and noncatalytic sites. Vogel PD; Cross RL J Biol Chem; 1991 Apr; 266(10):6101-5. PubMed ID: 1826104 [TBL] [Abstract][Full Text] [Related]
19. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297 [TBL] [Abstract][Full Text] [Related]
20. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. García JJ; Gómez-Puyou A; de Gómez-Puyou MT J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]