BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28797519)

  • 21. Transcriptional signatures of the BCL2 family for individualized acute myeloid leukaemia treatment.
    Lee C; Lee S; Park E; Hong J; Shin DY; Byun JM; Yun H; Koh Y; Yoon SS
    Genome Med; 2022 Sep; 14(1):111. PubMed ID: 36171613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex-vivo sensitivity profiling to guide clinical decision making in acute myeloid leukemia: A pilot study.
    Swords RT; Azzam D; Al-Ali H; Lohse I; Volmar CH; Watts JM; Perez A; Rodriguez A; Vargas F; Elias R; Vega F; Zelent A; Brothers SP; Abbasi T; Trent J; Rangwala S; Deutsch Y; Conneally E; Drusbosky L; Cogle CR; Wahlestedt C
    Leuk Res; 2018 Jan; 64():34-41. PubMed ID: 29175379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting of cell metabolism in human acute myeloid leukemia--more than targeting of isocitrate dehydrogenase mutations and PI3K/AKT/mTOR signaling?
    Hauge M; Bruserud Ø; Hatfield KJ
    Eur J Haematol; 2016 Mar; 96(3):211-21. PubMed ID: 26465810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Key molecular mechanisms associated with cell malignant transformation in acute myeloid leukemia].
    Orlova NN; Lebedev TD; Spirin PV; Prassolov VS
    Mol Biol (Mosk); 2016; 50(3):395-405. PubMed ID: 27414778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models.
    Lehmann C; Friess T; Birzele F; Kiialainen A; Dangl M
    J Hematol Oncol; 2016 Jun; 9(1):50. PubMed ID: 27353420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: its correlation with FLT3.
    Mehta SV; Shukla SN; Vora HH
    Neoplasma; 2013; 60(6):666-75. PubMed ID: 23906301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia.
    Brumatti G; Lalaoui N; Wei AH; Silke J
    Trends Mol Med; 2017 Mar; 23(3):264-281. PubMed ID: 28196625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MiR-182-5p regulates BCL2L12 and BCL2 expression in acute myeloid leukemia as a potential therapeutic target.
    Zhang S; Zhang Q; Shi G; Yin J
    Biomed Pharmacother; 2018 Jan; 97():1189-1194. PubMed ID: 29136958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies.
    Kurtz SE; Eide CA; Kaempf A; Khanna V; Savage SL; Rofelty A; English I; Ho H; Pandya R; Bolosky WJ; Poon H; Deininger MW; Collins R; Swords RT; Watts J; Pollyea DA; Medeiros BC; Traer E; Tognon CE; Mori M; Druker BJ; Tyner JW
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7554-E7563. PubMed ID: 28784769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Precision medicine: A major step forward in specific situations, a myth in refractory cancers?].
    Albin N; Mc Leer A; Sakhri L
    Bull Cancer; 2018 Apr; 105(4):375-396. PubMed ID: 29501208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision medicine in acute myeloid leukemia: where are we now and what does the future hold?
    Megías-Vericat JE; Martínez-Cuadrón D; Solana-Altabella A; Montesinos P
    Expert Rev Hematol; 2020 Oct; 13(10):1057-1065. PubMed ID: 32869672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small molecule inhibitors for acute myeloid leukemia: where is the field heading?
    Trippier PC
    Future Med Chem; 2017 Sep; 9(13):1453-1456. PubMed ID: 28795593
    [No Abstract]   [Full Text] [Related]  

  • 33. Combination screening in vitro identifies synergistically acting KP372-1 and cytarabine against acute myeloid leukemia.
    Österroos A; Kashif M; Haglund C; Blom K; Höglund M; Andersson C; Gustafsson MG; Eriksson A; Larsson R
    Biochem Pharmacol; 2016 Oct; 118():40-49. PubMed ID: 27565890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Development of FLT3 Inhibitors in Acute Myeloid Leukemia.
    Garcia JS; Stone RM
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):663-680. PubMed ID: 28673394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia.
    Lee SI; Celik S; Logsdon BA; Lundberg SM; Martins TJ; Oehler VG; Estey EH; Miller CP; Chien S; Dai J; Saxena A; Blau CA; Becker PS
    Nat Commun; 2018 Jan; 9(1):42. PubMed ID: 29298978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal transduction in Acute Myeloid Leukemia - Implications for Novel Therapeutic Concepts.
    Konig H; Santos CD
    Curr Cancer Drug Targets; 2015; 15(9):803-21. PubMed ID: 26278711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.
    Min C; Moore N; Shearstone JR; Quayle SN; Huang P; van Duzer JH; Jarpe MB; Jones SS; Yang M
    PLoS One; 2017; 12(1):e0169128. PubMed ID: 28060870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driving Toward Precision Medicine for Acute Leukemias: Are We There Yet?
    Chung C; Ma H
    Pharmacotherapy; 2017 Sep; 37(9):1052-1072. PubMed ID: 28654205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring therapy responses at the leukemic subclone level by ultra-deep amplicon resequencing in acute myeloid leukemia.
    Ojamies PN; Kontro M; Edgren H; Ellonen P; Lagström S; Almusa H; Miettinen T; Eldfors S; Tamborero D; Wennerberg K; Heckman C; Porkka K; Wolf M; Kallioniemi O
    Leukemia; 2017 May; 31(5):1048-1058. PubMed ID: 27795554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards precision medicine for AML.
    Döhner H; Wei AH; Löwenberg B
    Nat Rev Clin Oncol; 2021 Sep; 18(9):577-590. PubMed ID: 34006997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.