These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28797596)

  • 21. Isolation, expression, and characterization of blue light receptor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae).
    Deng Y; Yao J; Fu G; Guo H; Duan D
    Mar Biotechnol (NY); 2014 Apr; 16(2):135-43. PubMed ID: 24052494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. More than a photoreceptor: aureochromes are intrinsic to the diatom light-regulated transcriptional network.
    Coesel SN
    J Exp Bot; 2024 Mar; 75(7):1786-1790. PubMed ID: 38534187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles.
    Rayko E; Maumus F; Maheswari U; Jabbari K; Bowler C
    New Phytol; 2010 Oct; 188(1):52-66. PubMed ID: 20646219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum.
    Im SH; Lepetit B; Mosesso N; Shrestha S; Weiss L; Nymark M; Roellig R; Wilhelm C; Isono E; Kroth PG
    J Exp Bot; 2024 Mar; 75(7):1834-1851. PubMed ID: 38066674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells.
    Goett-Zink L; Klocke JL; Bögeholz LAK; Kottke T
    J Biol Chem; 2020 Aug; 295(33):11729-11741. PubMed ID: 32580943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State.
    Ozeki K; Tsukuno H; Nagashima H; Hisatomi O; Mino H
    Biochemistry; 2018 Feb; 57(5):494-497. PubMed ID: 29261300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
    Hisatomi O; Nakatani Y; Takeuchi K; Takahashi F; Kataoka H
    J Biol Chem; 2014 Jun; 289(25):17379-91. PubMed ID: 24790107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aureochromes maintain polyunsaturated fatty acid content in Nannochloropsis oceanica.
    Poliner E; Busch AWU; Newton L; Kim YU; Clark R; Gonzalez-Martinez SC; Jeong BR; Montgomery BL; Farré EM
    Plant Physiol; 2022 Jun; 189(2):906-921. PubMed ID: 35166829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain.
    Hepp S; Trauth J; Hasenjäger S; Bezold F; Essen LO; Taxis C
    J Mol Biol; 2020 Mar; 432(7):1880-1900. PubMed ID: 32105734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.
    Heintz U; Schlichting I
    Elife; 2016 Jan; 5():e11860. PubMed ID: 26754770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.
    Kobayashi I; Nakajima H; Hisatomi O
    Biochemistry; 2020 Jul; 59(28):2592-2601. PubMed ID: 32567839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional demonstration of Aureochrome 1a proteasomal degradation after blue light incubation in the diatom Phaeodactylum tricornutum.
    Im SH; Madhuri S; Lepetit B; Kroth PG
    J Plant Physiol; 2024 Jan; 292():154148. PubMed ID: 38101100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1.
    Nakajima H; Kobayashi I; Adachi Y; Hisatomi O
    Sci Rep; 2021 Jun; 11(1):11995. PubMed ID: 34099847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light.
    Zhang H; Xiong X; Guo K; Zheng M; Cao T; Yang Y; Song J; Cen J; Zhang J; Jiang Y; Feng S; Tian L; Li X
    Nat Commun; 2024 Jul; 15(1):5578. PubMed ID: 38956103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production.
    Hart JE; Sullivan S; Hermanowicz P; Petersen J; Diaz-Ramos LA; Hoey DJ; Łabuz J; Christie JM
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12550-12557. PubMed ID: 31160455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light at the End of the Protein: Crystal Structure of a C-Terminal Light-Sensing Domain.
    Janovjak H
    Structure; 2016 Feb; 24(2):213-5. PubMed ID: 26840826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A blue-light photoreceptor mediates the feedback regulation of photosynthesis.
    Petroutsos D; Tokutsu R; Maruyama S; Flori S; Greiner A; Magneschi L; Cusant L; Kottke T; Mittag M; Hegemann P; Finazzi G; Minagawa J
    Nature; 2016 Sep; 537(7621):563-566. PubMed ID: 27626383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study.
    Bannister S; Böhm E; Zinn T; Hellweg T; Kottke T
    Struct Dyn; 2019 May; 6(3):034701. PubMed ID: 31263739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diverse responses to blue light via LOV photoreceptors.
    Shimazaki K; Tokutomi S
    Plant Cell Physiol; 2013 Jan; 54(1):1-4. PubMed ID: 23300091
    [No Abstract]   [Full Text] [Related]  

  • 40. Deciphering the Allosteric Process of the
    Tian H; Trozzi F; Zoltowski BD; Tao P
    J Phys Chem B; 2020 Oct; 124(41):8960-8972. PubMed ID: 32970438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.