BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28797628)

  • 1. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.
    Násner AML; Lora EES; Palacio JCE; Rocha MH; Restrepo JC; Venturini OJ; Ratner A
    Waste Manag; 2017 Nov; 69():187-201. PubMed ID: 28797628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.
    Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J
    Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.
    López-Sabirón AM; Fleiger K; Schäfer S; Antoñanzas J; Irazustabarrena A; Aranda-Usón A; Ferreira GA
    Waste Manag Res; 2015 Aug; 33(8):715-22. PubMed ID: 26081643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study on municipal solid waste plasma gasification.
    Tavares R; Ramos A; Rouboa A
    Waste Manag; 2019 May; 90():37-45. PubMed ID: 31088672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of 8 ton/day gasification process to generate electricity using a gas engine for solid refuse fuel.
    Park SW; Seo YC; Lee SY; Yang WS; Oh JH; Gu JH
    Waste Manag; 2020 Jul; 113():186-196. PubMed ID: 32535371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel real-time monitoring and control system for waste-to-energy gasification process employing differential temperature profiling of a downdraft gasifier.
    Chan WP; Veksha A; Lei J; Oh WD; Dou X; Giannis A; Lisak G; Lim TT
    J Environ Manage; 2019 Mar; 234():65-74. PubMed ID: 30616190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of operating parameters on co-gasification of coconut petioles and refuse-derived fuel.
    Chommontha N; Phongphiphat A; Wangyao K; Patumsawad S; Towprayoon S
    Waste Manag Res; 2022 May; 40(5):575-585. PubMed ID: 33779430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision.
    Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and comparative assessment of municipal solid waste gasification for energy production.
    Arafat HA; Jijakli K
    Waste Manag; 2013 Aug; 33(8):1704-13. PubMed ID: 23726119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
    Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of syngas quality for two-stage gasification of selected waste feedstocks.
    De Filippis P; Borgianni C; Paolucci M; Pochetti F
    Waste Manag; 2004; 24(6):633-9. PubMed ID: 15219922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of RDF gasification in a two stage fluidized bed-plasma process.
    Materazzi M; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2016 Jan; 47(Pt B):256-66. PubMed ID: 26184896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?
    Sulc J; Stojdl J; Richter M; Popelka J; Svoboda K; Smetana J; Vacek J; Skoblja S; Buryan P
    Waste Manag; 2012 Apr; 32(4):692-700. PubMed ID: 21925858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil.
    Medina Jimenez AC; Bereche RP; Nebra S
    Waste Manag Res; 2019 Jun; 37(6):631-642. PubMed ID: 30983548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.
    Narnaware SL; Srivastava N; Vahora S
    Waste Manag Res; 2017 Mar; 35(3):276-284. PubMed ID: 27928060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.