BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28797710)

  • 1. A Bayesian system to detect and characterize overlapping outbreaks.
    Aronis JM; Millett NE; Wagner MM; Tsui F; Ye Y; Ferraro JP; Haug PJ; Gesteland PH; Cooper GF
    J Biomed Inform; 2017 Sep; 73():171-181. PubMed ID: 28797710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for detecting and characterizing outbreaks of infectious disease from clinical reports.
    Cooper GF; Villamarin R; Rich Tsui FC; Millett N; Espino JU; Wagner MM
    J Biomed Inform; 2015 Feb; 53():15-26. PubMed ID: 25181466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian Outbreak Detection Method for Influenza-Like Illness.
    García YE; Christen JA; Capistrán MA
    Biomed Res Int; 2015; 2015():751738. PubMed ID: 26425552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Variations in Event-Based Surveillance for Disease Outbreak Detection: Time Series Analysis.
    Ganser I; Thiébaut R; Buckeridge DL
    JMIR Public Health Surveill; 2022 Oct; 8(10):e36211. PubMed ID: 36315218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FluHMM: A simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection.
    Lytras T; Gkolfinopoulou K; Bonovas S; Nunes B
    Stat Methods Med Res; 2019 Jun; 28(6):1826-1840. PubMed ID: 29869565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
    Zou J; Karr AF; Datta G; Lynch J; Grannis S
    BMC Med Inform Decis Mak; 2014 Dec; 14():108. PubMed ID: 25476843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Markov switching models for the early detection of influenza epidemics.
    Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A
    Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.
    Shen Y; Cooper GF
    Comput Methods Programs Biomed; 2012 Sep; 107(3):436-46. PubMed ID: 21195503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
    Kadi AS; Avaradi SR
    Comput Math Methods Med; 2015; 2015():256319. PubMed ID: 25784956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting routinely collected severe case data to monitor and predict influenza outbreaks.
    Corbella A; Zhang XS; Birrell PJ; Boddington N; Pebody RG; Presanis AM; De Angelis D
    BMC Public Health; 2018 Jun; 18(1):790. PubMed ID: 29940907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fluEvidenceSynthesis: An R package for evidence synthesis based analysis of epidemiological outbreaks.
    van Leeuwen E; Klepac P; Thorrington D; Pebody R; Baguelin M
    PLoS Comput Biol; 2017 Nov; 13(11):e1005838. PubMed ID: 29155812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian hierarchical modeling of the dynamics of spatio-temporal influenza season outbreaks.
    Lawson AB; Song HR
    Spat Spatiotemporal Epidemiol; 2010 Jul; 1(2-3):187-95. PubMed ID: 22749473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian dynamic model for influenza surveillance.
    Sebastiani P; Mandl KD; Szolovits P; Kohane IS; Ramoni MF
    Stat Med; 2006 Jun; 25(11):1803-16; discussion 1817-25. PubMed ID: 16645996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated influenza case detection for public health surveillance and clinical diagnosis using dynamic influenza prevalence method.
    Tsui F; Ye Y; Ruiz V; Cooper GF; Wagner MM
    J Public Health (Oxf); 2018 Dec; 40(4):878-885. PubMed ID: 29059331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS).
    Wang R; Jiang Y; Michael E; Zhao G
    BMC Public Health; 2017 Jun; 17(1):570. PubMed ID: 28606078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian spatio-temporal method for disease outbreak detection.
    Jiang X; Cooper GF
    J Am Med Inform Assoc; 2010; 17(4):462-71. PubMed ID: 20595315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early detection of influenza outbreaks using the DC Department of Health's syndromic surveillance system.
    Griffin BA; Jain AK; Davies-Cole J; Glymph C; Lum G; Washington SC; Stoto MA
    BMC Public Health; 2009 Dec; 9():483. PubMed ID: 20028535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of force of infection based on different epidemiological proxies: 2009/2010 Influenza epidemic in Malta.
    Marmara V; Cook A; Kleczkowski A
    Epidemics; 2014 Dec; 9():52-61. PubMed ID: 25480134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian System to Detect and Track Outbreaks of Influenza-Like Illnesses Including Novel Diseases.
    Aronis JM; Ye Y; Espino J; Hochheiser H; Michaels MG; Cooper GF
    JMIR Public Health Surveill; 2024 May; ():. PubMed ID: 38805611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic downscaling and daily nowcasting from influenza surveillance data.
    Paul R; Han D; DeDoncker E; Prieto D
    Stat Med; 2022 Sep; 41(21):4159-4175. PubMed ID: 35718471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.