These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 28797788)
1. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Wiemann J; Loesche A; Csuk R Bioorg Chem; 2017 Oct; 74():145-157. PubMed ID: 28797788 [TBL] [Abstract][Full Text] [Related]
2. Novel 12-hydroxydehydroabietylamine derivatives act as potent and selective butyrylcholinesterase inhibitors. Loesche A; Wiemann J; Rohmer M; Brandt W; Csuk R Bioorg Chem; 2019 Sep; 90():103092. PubMed ID: 31280014 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Krátký M; Štěpánková Š; Vorčáková K; Vinšová J Bioorg Chem; 2016 Oct; 68():23-9. PubMed ID: 27428597 [TBL] [Abstract][Full Text] [Related]
4. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase. Wu J; Pistolozzi M; Liu S; Tan W Bioorg Med Chem; 2020 Mar; 28(5):115324. PubMed ID: 32008882 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Kazakova O; Smirnova I; Lopatina T; Giniyatullina G; Petrova A; Khusnutdinova E; Csuk R; Serbian I; Loesche A Bioorg Chem; 2020 Aug; 101():104001. PubMed ID: 32683137 [TBL] [Abstract][Full Text] [Related]
6. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Krátký M; Štěpánková Š; Brablíková M; Svrčková K; Švarcová M; Vinšová J Curr Top Med Chem; 2020; 20(23):2106-2117. PubMed ID: 32814531 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro. Utku S; Gökçe M; Orhan I; Sahin MF Arzneimittelforschung; 2011; 61(1):1-7. PubMed ID: 21355440 [TBL] [Abstract][Full Text] [Related]
8. Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase. Heller L; Kahnt M; Loesche A; Grabandt P; Schwarz S; Brandt W; Csuk R Eur J Med Chem; 2017 Jan; 126():652-668. PubMed ID: 27936444 [TBL] [Abstract][Full Text] [Related]
10. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Krátký M; Štěpánková Š; Vorčáková K; Vinšová J Bioorg Chem; 2018 Oct; 80():668-673. PubMed ID: 30059892 [TBL] [Abstract][Full Text] [Related]
11. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Wiemann J; Karasch J; Loesche A; Heller L; Brandt W; Csuk R Eur J Med Chem; 2017 Oct; 139():222-231. PubMed ID: 28802122 [TBL] [Abstract][Full Text] [Related]
12. Ionic liquid-enabled synthesis, cholinesterase inhibitory activity, and molecular docking study of highly functionalized tetrasubstituted pyrrolidines. Kumar RS; Almansour AI; Arumugam N; Althomili DMQ; Altaf M; Basiri A; D K; Sai Manohar T; S V Bioorg Chem; 2018 Apr; 77():263-268. PubMed ID: 29421701 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors. Gao CZ; Dong W; Cui ZW; Yuan Q; Hu XM; Wu QM; Han X; Xu Y; Min ZL J Enzyme Inhib Med Chem; 2019 Dec; 34(1):150-162. PubMed ID: 30427217 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors. Nisa MU; Munawar MA; Iqbal A; Ahmed A; Ashraf M; Gardener QA; Khan MA Eur J Med Chem; 2017 Sep; 138():396-406. PubMed ID: 28688279 [TBL] [Abstract][Full Text] [Related]
15. A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies. Bozbey İ; Özdemir Z; Uslu H; Özçelik AB; Şenol FS; Orhan İE; Uysal M Mini Rev Med Chem; 2020; 20(11):1042-1060. PubMed ID: 31660824 [TBL] [Abstract][Full Text] [Related]
16. Alkynyl and β-ketophosphonates: Selective and potent butyrylcholinesterase inhibitors. Cavallaro V; Moglie YF; Murray AP; Radivoy GE Bioorg Chem; 2018 Apr; 77():420-428. PubMed ID: 29427857 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Razavi SF; Khoobi M; Nadri H; Sakhteman A; Moradi A; Emami S; Foroumadi A; Shafiee A Eur J Med Chem; 2013 Jun; 64():252-9. PubMed ID: 23644208 [TBL] [Abstract][Full Text] [Related]
18. Gypsogenin derivatives: an unexpected class of inhibitors of cholinesterases. Heller L; Schwarz S; Weber BA; Csuk R Arch Pharm (Weinheim); 2014 Oct; 347(10):707-16. PubMed ID: 25042600 [TBL] [Abstract][Full Text] [Related]
19. Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors. Kilic B; Erdogan M; Gulcan HO; Aksakal F; Oruklu N; Bagriacik EU; Dogruer DS Med Chem; 2019; 15(1):59-76. PubMed ID: 29792155 [TBL] [Abstract][Full Text] [Related]
20. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Schwarz S; Lucas SD; Sommerwerk S; Csuk R Bioorg Med Chem; 2014 Jul; 22(13):3370-8. PubMed ID: 24853320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]