BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28797788)

  • 1. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase.
    Wiemann J; Loesche A; Csuk R
    Bioorg Chem; 2017 Oct; 74():145-157. PubMed ID: 28797788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel 12-hydroxydehydroabietylamine derivatives act as potent and selective butyrylcholinesterase inhibitors.
    Loesche A; Wiemann J; Rohmer M; Brandt W; Csuk R
    Bioorg Chem; 2019 Sep; 90():103092. PubMed ID: 31280014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.
    Krátký M; Štěpánková Š; Vorčáková K; Vinšová J
    Bioorg Chem; 2016 Oct; 68():23-9. PubMed ID: 27428597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Wu J; Pistolozzi M; Liu S; Tan W
    Bioorg Med Chem; 2020 Mar; 28(5):115324. PubMed ID: 32008882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids.
    Kazakova O; Smirnova I; Lopatina T; Giniyatullina G; Petrova A; Khusnutdinova E; Csuk R; Serbian I; Loesche A
    Bioorg Chem; 2020 Aug; 101():104001. PubMed ID: 32683137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors.
    Krátký M; Štěpánková Š; Brablíková M; Svrčková K; Švarcová M; Vinšová J
    Curr Top Med Chem; 2020; 20(23):2106-2117. PubMed ID: 32814531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro.
    Utku S; Gökçe M; Orhan I; Sahin MF
    Arzneimittelforschung; 2011; 61(1):1-7. PubMed ID: 21355440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase.
    Heller L; Kahnt M; Loesche A; Grabandt P; Schwarz S; Brandt W; Csuk R
    Eur J Med Chem; 2017 Jan; 126():652-668. PubMed ID: 27936444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Hydroxy-
    Krátký M; Štěpánková Š; Houngbedji NH; Vosátka R; Vorčáková K; Vinšová J
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31694272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase.
    Krátký M; Štěpánková Š; Vorčáková K; Vinšová J
    Bioorg Chem; 2018 Oct; 80():668-673. PubMed ID: 30059892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase.
    Wiemann J; Karasch J; Loesche A; Heller L; Brandt W; Csuk R
    Eur J Med Chem; 2017 Oct; 139():222-231. PubMed ID: 28802122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic liquid-enabled synthesis, cholinesterase inhibitory activity, and molecular docking study of highly functionalized tetrasubstituted pyrrolidines.
    Kumar RS; Almansour AI; Arumugam N; Althomili DMQ; Altaf M; Basiri A; D K; Sai Manohar T; S V
    Bioorg Chem; 2018 Apr; 77():263-268. PubMed ID: 29421701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors.
    Gao CZ; Dong W; Cui ZW; Yuan Q; Hu XM; Wu QM; Han X; Xu Y; Min ZL
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):150-162. PubMed ID: 30427217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors.
    Nisa MU; Munawar MA; Iqbal A; Ahmed A; Ashraf M; Gardener QA; Khan MA
    Eur J Med Chem; 2017 Sep; 138():396-406. PubMed ID: 28688279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies.
    Bozbey İ; Özdemir Z; Uslu H; Özçelik AB; Şenol FS; Orhan İE; Uysal M
    Mini Rev Med Chem; 2020; 20(11):1042-1060. PubMed ID: 31660824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkynyl and β-ketophosphonates: Selective and potent butyrylcholinesterase inhibitors.
    Cavallaro V; Moglie YF; Murray AP; Radivoy GE
    Bioorg Chem; 2018 Apr; 77():420-428. PubMed ID: 29427857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.
    Razavi SF; Khoobi M; Nadri H; Sakhteman A; Moradi A; Emami S; Foroumadi A; Shafiee A
    Eur J Med Chem; 2013 Jun; 64():252-9. PubMed ID: 23644208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gypsogenin derivatives: an unexpected class of inhibitors of cholinesterases.
    Heller L; Schwarz S; Weber BA; Csuk R
    Arch Pharm (Weinheim); 2014 Oct; 347(10):707-16. PubMed ID: 25042600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors.
    Kilic B; Erdogan M; Gulcan HO; Aksakal F; Oruklu N; Bagriacik EU; Dogruer DS
    Med Chem; 2019; 15(1):59-76. PubMed ID: 29792155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.
    Schwarz S; Lucas SD; Sommerwerk S; Csuk R
    Bioorg Med Chem; 2014 Jul; 22(13):3370-8. PubMed ID: 24853320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.