These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28798358)

  • 1. Small amphipathic peptides are responsible for the assembly of cruciferin nanoparticles.
    Hong H; Akbari A; Wu J
    Sci Rep; 2017 Aug; 7(1):7819. PubMed ID: 28798358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures.
    Akbari A; Lavasanifar A; Wu J
    Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of varied sequence pattern on the self-assembly of amphipathic peptides.
    Lee NR; Bowerman CJ; Nilsson BL
    Biomacromolecules; 2013 Sep; 14(9):3267-77. PubMed ID: 23952713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of amphipathic β-sheet peptides: insights and applications.
    Bowerman CJ; Nilsson BL
    Biopolymers; 2012; 98(3):169-84. PubMed ID: 22782560
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled arrays of self-assembled peptide nanostructures in solution and at interface.
    Wang JX; Lei Q; Luo GF; Cai TT; Li JL; Cheng SX; Zhuo RX; Zhang XZ
    Langmuir; 2013 Jun; 29(23):6996-7004. PubMed ID: 23663135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene-
    Song X; Liu C; Liu X; Liu S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3969-3975. PubMed ID: 31867959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.
    Wang F; Yang Y; Ju X; Udenigwe CC; He R
    J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chain length of an amphipathic polypeptide carrying the repeated amino acid sequence (LETLAKA)(n) on α-helix and fibrous assembly formation.
    Takei T; Hasegawa K; Imada K; Namba K; Tsumoto K; Kuriki Y; Yoshino M; Yazaki K; Kojima S; Takei T; Ueda T; Miura K
    Biochemistry; 2013 Apr; 52(16):2810-20. PubMed ID: 23530905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence length determinants for self-assembly of amphipathic β-sheet peptides.
    Lee NR; Bowerman CJ; Nilsson BL
    Biopolymers; 2013 Nov; 100(6):738-50. PubMed ID: 23553562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of basic peptides having amphipathic beta-structure and their interaction with phospholipid membranes.
    Ono S; Lee S; Mihara H; Aoyagi H; Kato T; Yamasaki N
    Biochim Biophys Acta; 1990 Feb; 1022(2):237-44. PubMed ID: 2306456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.
    Singh N; Kumar M; Miravet JF; Ulijn RV; Escuder B
    Chemistry; 2017 Jan; 23(5):981-993. PubMed ID: 27530095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds.
    Wan L; Ross AR; Yang J; Hegedus DD; Kermode AR
    Biochem J; 2007 Jun; 404(2):247-56. PubMed ID: 17313365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery.
    Sharma R; Shivpuri S; Anand A; Kulshreshtha A; Ganguli M
    Mol Pharm; 2013 Jul; 10(7):2588-600. PubMed ID: 23725377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide self-assembly: thermodynamics and kinetics.
    Wang J; Liu K; Xing R; Yan X
    Chem Soc Rev; 2016 Oct; 45(20):5589-5604. PubMed ID: 27487936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Interplay between Self-Assembling Peptides and Solution Ions for Tunable Protein Nanoparticle Formation.
    Shanbhag BK; Liu C; Haritos VS; He L
    ACS Nano; 2018 Jul; 12(7):6956-6967. PubMed ID: 29928801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable self-assembled peptide amphiphile nanostructures.
    Meng Q; Kou Y; Ma X; Liang Y; Guo L; Ni C; Liu K
    Langmuir; 2012 Mar; 28(11):5017-22. PubMed ID: 22352406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.