These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28798395)

  • 1. Nanostructured plasmonic metapixels.
    Williams C; Rughoobur G; Flewitt AJ; Wilkinson TD
    Sci Rep; 2017 Aug; 7(1):7745. PubMed ID: 28798395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.
    Olson J; Manjavacas A; Basu T; Huang D; Schlather AE; Zheng B; Halas NJ; Nordlander P; Link S
    ACS Nano; 2016 Jan; 10(1):1108-17. PubMed ID: 26639191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette.
    Li Z; Clark AW; Cooper JM
    ACS Nano; 2016 Jan; 10(1):492-8. PubMed ID: 26631346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals.
    Xiong K; Tordera D; Emilsson G; Olsson O; Linderhed U; Jonsson MP; Dahlin AB
    Nano Lett; 2017 Nov; 17(11):7033-7039. PubMed ID: 29028347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Metapixels for Dynamically Switchable Structural Color.
    Hu Q; Lin KT; Lin H; Zhang Y; Jia B
    ACS Nano; 2021 May; 15(5):8930-8939. PubMed ID: 33988983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures.
    James TD; Mulvaney P; Roberts A
    Nano Lett; 2016 Jun; 16(6):3817-23. PubMed ID: 27164410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Plasmonic Painter's Method of Color Mixing for a Continuous Red-Green-Blue Palette.
    Hail CU; Schnoering G; Damak M; Poulikakos D; Eghlidi H
    ACS Nano; 2020 Feb; 14(2):1783-1791. PubMed ID: 32003976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic plasmonic polarizers for active visible color filtering and polarimetry.
    Ellenbogen T; Seo K; Crozier KB
    Nano Lett; 2012 Feb; 12(2):1026-31. PubMed ID: 22229785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces.
    Yang JH; Babicheva VE; Yu MW; Lu TC; Lin TR; Chen KP
    ACS Nano; 2020 May; 14(5):5678-5685. PubMed ID: 32298575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the electrical crosstalk effect between pixels in high-resolution organic light-emitting diode microdisplays.
    Kang H; Hwang Y; Kang CM; Kim JY; Joo CW; Shin JW; Sim S; Cho H; Ahn DH; Cho NS; Youn HM; An YJ; Kim JS; Byun CW; Lee H
    Sci Rep; 2023 Aug; 13(1):14070. PubMed ID: 37640762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.
    Aydin K; Ferry VE; Briggs RM; Atwater HA
    Nat Commun; 2011 Nov; 2():517. PubMed ID: 22044996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization between plasmonic and photonic modes in laser-induced self-organized quasi-random plasmonic metasurfaces.
    Le VD; Lefkir Y; Destouches N
    Nanoscale; 2023 Dec; 15(47):19339-19350. PubMed ID: 38009459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-Gamut Plasmonic Color Palettes with Constant Subwavelength Resolution.
    Rezaei SD; Hong Ng RJ; Dong Z; Ho J; Koay EHH; Ramakrishna S; Yang JKW
    ACS Nano; 2019 Mar; 13(3):3580-3588. PubMed ID: 30735357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels.
    Lee JS; Park JY; Kim YH; Jeon S; Ouellette O; Sargent EH; Kim DH; Hyun JK
    Nat Commun; 2019 Oct; 10(1):4782. PubMed ID: 31636260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber.
    Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H
    Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters.
    Zeng B; Gao Y; Bartoli FJ
    Sci Rep; 2013 Oct; 3():2840. PubMed ID: 24100869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states.
    Franklin D; He Z; Mastranzo Ortega P; Safaei A; Cencillo-Abad P; Wu ST; Chanda D
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13350-13358. PubMed ID: 32493745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color gamut change by optical crosstalk in high-resolution organic light-emitting diode microdisplays.
    Sim S; Ryu J; Ahn DH; Cho H; Kang CM; Shin JW; Joo CW; Kim GH; Byun CW; Cho NS; Youn HM; An YJ; Kim JS; Jung H; Lee H
    Opt Express; 2022 Jun; 30(13):24155-24165. PubMed ID: 36225082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper-selective plasmonic color filters.
    Fleischman D; Sweatlock LA; Murakami H; Atwater H
    Opt Express; 2017 Oct; 25(22):27386-27395. PubMed ID: 29092212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength.
    Zhou X; Wenger J; Viscomi FN; Le Cunff L; Béal J; Kochtcheev S; Yang X; Wiederrecht GP; Colas des Francs G; Bisht AS; Jradi S; Caputo R; Demir HV; Schaller RD; Plain J; Vial A; Sun XW; Bachelot R
    Nano Lett; 2015 Nov; 15(11):7458-66. PubMed ID: 26437118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.