These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28798404)

  • 41. A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states.
    Rivera M; Ayon OS; Diaconescu-Grabari S; Pottel J; Moitessier N; Mittermaier A; McKeague M
    Nucleic Acids Res; 2024 Apr; 52(6):3164-3179. PubMed ID: 38375901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.
    Dar D; Shamir M; Mellin JR; Koutero M; Stern-Ginossar N; Cossart P; Sorek R
    Science; 2016 Apr; 352(6282):aad9822. PubMed ID: 27120414
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property.
    Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch.
    Matyjasik MM; Hall SD; Batey RT
    Molecules; 2020 May; 25(10):. PubMed ID: 32414072
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element.
    Dambach M; Sandoval M; Updegrove TB; Anantharaman V; Aravind L; Waters LS; Storz G
    Mol Cell; 2015 Mar; 57(6):1099-1109. PubMed ID: 25794618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-molecule analysis reveals multi-state folding of a guanine riboswitch.
    Chandra V; Hannan Z; Xu H; Mandal M
    Nat Chem Biol; 2017 Feb; 13(2):194-201. PubMed ID: 27941758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
    Suddala KC; Zhang J
    IUBMB Life; 2019 Aug; 71(8):1167-1180. PubMed ID: 31206978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation and Development of an Escherichia coli Riboflavin Pathway Phenotypic Screen Hit as a Small-Molecule Ligand of the Flavin Mononucleotide Riboswitch.
    Balibar CJ; Villafania A; Barbieri CM; Murgolo N; Roemer T; Wang H; Howe JA
    Methods Mol Biol; 2018; 1787():19-40. PubMed ID: 29736707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and application of a high-throughput assay for glmS riboswitch activators.
    Blount K; Puskarz I; Penchovsky R; Breaker R
    RNA Biol; 2006 Apr; 3(2):77-81. PubMed ID: 17114942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reporter Gene-Based Screening for TPP Riboswitch Activators.
    Lünse CE; Mayer G
    Methods Mol Biol; 2017; 1520():227-235. PubMed ID: 27873255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis.
    Hattori M; Ozawa T
    Methods Mol Biol; 2016; 1461():195-202. PubMed ID: 27424906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
    Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG
    Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
    Welz R; Breaker RR
    RNA; 2007 Apr; 13(4):573-82. PubMed ID: 17307816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Screening for small molecule inhibitors of SAH nucleosidase using an SAH riboswitch.
    Sadeeshkumar H; Balaji A; Sutherland AG; Mootien S; Anthony KG; Breaker RR
    Anal Biochem; 2023 Apr; 666():115047. PubMed ID: 36682579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes.
    Sherlock ME; Breaker RR
    RNA; 2020 Jun; 26(6):675-693. PubMed ID: 32165489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.