These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28798492)

  • 41. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars.
    Warner NH; Farmer JD
    Astrobiology; 2010 Jun; 10(5):523-47. PubMed ID: 20624060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation.
    Bristow TF; Kennedy MJ; Derkowski A; Droser ML; Jiang G; Creaser RA
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13190-5. PubMed ID: 19666508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron-magnesium silicate bioweathering on Earth (and Mars?).
    Fisk MR; Popa R; Mason OU; Storrie-Lombardi MC; Vicenzi EP
    Astrobiology; 2006 Feb; 6(1):48-68. PubMed ID: 16551226
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brine-driven destruction of clay minerals in Gale crater, Mars.
    Bristow TF; Grotzinger JP; Rampe EB; Cuadros J; Chipera SJ; Downs GW; Fedo CM; Frydenvang J; McAdam AC; Morris RV; Achilles CN; Blake DF; Castle N; Craig P; Des Marais DJ; Downs RT; Hazen RM; Ming DW; Morrison SM; Thorpe MT; Treiman AH; Tu V; Vaniman DT; Yen AS; Gellert R; Mahaffy PR; Wiens RC; Bryk AB; Bennett KA; Fox VK; Millken RE; Fraeman AA; Vasavada AR
    Science; 2021 Jul; 373(6551):198-204. PubMed ID: 34244410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars.
    Thomas NH; Ehlmann BL; Meslin PY; Rapin W; Anderson DE; Rivera-Hernández F; Forni O; Schröder S; Cousin A; Mangold N; Gellert R; Gasnault O; Wiens RC
    Geophys Res Lett; 2019 Oct; 46(19):10754-10763. PubMed ID: 31894167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral and chemical characterization of jarosite in a palaeolacustrine depositional environment in Warkalli Formation in Kerala, South India and its implications.
    Singh M; Rajesh VJ; Sajinkumar KS; Sajeev K; Kumar SN
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Nov; 168():86-97. PubMed ID: 27285473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial influence on dolomite and authigenic clay mineralisation in dolocrete profiles of NW Australia.
    Mather CC; Lampinen HM; Tucker M; Leopold M; Dogramaci S; Raven M; Gilkes RJ
    Geobiology; 2023 Sep; 21(5):644-670. PubMed ID: 36973880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars.
    Hausrath EM; Tschauner O
    Astrobiology; 2013 Nov; 13(11):1049-64. PubMed ID: 24283927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).
    Martín-Redondo MP; Martínez ES; Sampedro MT; Armiens C; Gómez-Elvira J; Martinez-Frias J
    J Environ Monit; 2009 Jul; 11(7):1428-32. PubMed ID: 20449234
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars.
    Stern JC; Malespin CA; Eigenbrode JL; Webster CR; Flesch G; Franz HB; Graham HV; House CH; Sutter B; Archer PD; Hofmann AE; McAdam AC; Ming DW; Navarro-Gonzalez R; Steele A; Freissinet C; Mahaffy PR
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2201139119. PubMed ID: 35759667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology.
    Chatzitheodoridis E; Haigh S; Lyon I
    Astrobiology; 2014 Aug; 14(8):651-93. PubMed ID: 25046549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Remote Detection of Clay Minerals.
    Bishop JL; Michalski JR; Carter J
    Dev Clay Sci; 2017; 8():482-514. PubMed ID: 34045934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.
    Michalski JR; Jean-PierreBibring ; Poulet F; Loizeau D; Mangold N; Dobrea EN; Bishop JL; Wray JJ; McKeown NK; Parente M; Hauber E; Altieri F; Carrozzo FG; Niles PB
    Astrobiology; 2010 Sep; 10(7):687-703. PubMed ID: 20950170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument.
    Mustard JF; Murchie SL; Pelkey SM; Ehlmann BL; Milliken RE; Grant JA; Bibring JP; Poulet F; Bishop J; Dobrea EN; Roach L; Seelos F; Arvidson RE; Wiseman S; Green R; Hash C; Humm D; Malaret E; McGovern JA; Seelos K; Clancy T; Clark R; Marais DD; Izenberg N; Knudson A; Langevin Y; Martin T; McGuire P; Morris R; Robinson M; Roush T; Smith M; Swayze G; Taylor H; Titus T; Wolff M
    Nature; 2008 Jul; 454(7202):305-9. PubMed ID: 18633411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clays and the Origin of Life: The Experiments.
    Kloprogge JTT; Hartman H
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater.
    McSween HY; Arvidson RE; Bell JF; Blaney D; Cabrol NA; Christensen PR; Clark BC; Crisp JA; Crumpler LS; Des Marais DJ; Farmer JD; Gellert R; Ghosh A; Gorevan S; Graff T; Grant J; Haskin LA; Herkenhoff KE; Johnson JR; Jolliff BL; Klingelhoefer G; Knudson AT; McLennan S; Milam KA; Moersch JE; Morris RV; Rieder R; Ruff SW; De Souza PA; Squyres SW; Wänke H; Wang A; Wyatt MB; Yen A; Zipfel J
    Science; 2004 Aug; 305(5685):842-5. PubMed ID: 15297668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate-Bearing Rocks Within and Outside of Jezero Crater.
    Tarnas JD; Stack KM; Parente M; Koeppel AHD; Mustard JF; Moore KR; Horgan BHN; Seelos FP; Cloutis EA; Kelemen PB; Flannery D; Brown AJ; Frizzell KR; Pinet P
    J Geophys Res Planets; 2021 Nov; 126(11):e2021JE006898. PubMed ID: 34824965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations.
    Ehlmann BL; Edgett KS; Sutter B; Achilles CN; Litvak ML; Lapotre MGA; Sullivan R; Fraeman AA; Arvidson RE; Blake DF; Bridges NT; Conrad PG; Cousin A; Downs RT; Gabriel TSJ; Gellert R; Hamilton VE; Hardgrove C; Johnson JR; Kuhn S; Mahaffy PR; Maurice S; McHenry M; Meslin PY; Ming DW; Minitti ME; Morookian JM; Morris RV; O'Connell-Cooper CD; Pinet PC; Rowland SK; Schröder S; Siebach KL; Stein NT; Thompson LM; Vaniman DT; Vasavada AR; Wellington DF; Wiens RC; Yen AS
    J Geophys Res Planets; 2017 Dec; 122(12):2510-2543. PubMed ID: 29497589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Source-to-Sink Terrestrial Analogs for the Paleoenvironment of Gale Crater, Mars.
    Thorpe MT; Hurowitz JA; Siebach KL
    J Geophys Res Planets; 2021 Feb; 126(2):e2020JE006530. PubMed ID: 33777606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Martian Magmatic Clay Minerals Forming Vesicles: Perfect Niches for Emerging Life?
    Viennet JC; Bernard S; Le Guillou C; Sautter V; Grégoire B; Jambon A; Pont S; Beyssac O; Zanda B; Hewins R; Remusat L
    Astrobiology; 2021 May; 21(5):605-612. PubMed ID: 33684326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.