BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 2879870)

  • 1. Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations.
    Ballas ZK; Rasmussen W; van Otegham JK
    J Immunol; 1987 Mar; 138(5):1647-52. PubMed ID: 2879870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells.
    Kalland T; Belfrage H; Bhiladvala P; Hedlund G
    J Immunol; 1987 Jun; 138(11):3640-5. PubMed ID: 3495566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells.
    Yang JC; Mulé JJ; Rosenberg SA
    J Immunol; 1986 Jul; 137(2):715-22. PubMed ID: 2873187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precursor phenotype of lymphokine-activated killer cells in the mouse.
    Salup RR; Mathieson BJ; Wiltrout RH
    J Immunol; 1987 Jun; 138(11):3635-9. PubMed ID: 3108370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2.
    Suzuki R; Suzuki S; Ebina N; Kumagai K
    J Immunol; 1985 Apr; 134(4):2139-48. PubMed ID: 2579129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined therapy of mice bearing a lymphokine-activated killer-resistant tumor with recombinant interleukin 2 and an antitumor monoclonal antibody capable of inducing antibody-dependent cellular cytotoxicity.
    Kawase I; Komuta K; Hara H; Inoue T; Hosoe S; Ikeda T; Shirasaka T; Yokota S; Tanio Y; Masuno T
    Cancer Res; 1988 Mar; 48(5):1173-9. PubMed ID: 3257715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphokine-activated killer (LAK) cells. IV. Characterization of murine LAK effector subpopulations.
    Ballas ZK; Rasmussen W
    J Immunol; 1990 Jan; 144(1):386-95. PubMed ID: 2104892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of long-term cultured activated killer cells induced by anti-T3 antibody.
    Yun YS; Hargrove ME; Ting CC
    J Immunol; 1988 Aug; 141(4):1390-7. PubMed ID: 3260924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-4-induced lymphokine-activated killer cells. Lytic activity is mediated by phenotypically distinct natural killer-like and T cell-like large granular lymphocytes.
    Peace DJ; Kern DE; Schultz KR; Greenberg PD; Cheever MA
    J Immunol; 1988 May; 140(10):3679-85. PubMed ID: 2896213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Tilden AB; Itoh K; Balch CM
    J Immunol; 1987 Feb; 138(4):1068-73. PubMed ID: 3100627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells.
    Mulé JJ; Yang J; Shu S; Rosenberg SA
    J Immunol; 1986 May; 136(10):3899-909. PubMed ID: 2871106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of murine lymphokine-activated killer cells by recombinant IL-7.
    Lynch DH; Miller RE
    J Immunol; 1990 Sep; 145(6):1983-90. PubMed ID: 1975262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of asialo GM1 and other antigens and glycolipids on natural killer cells and spleen leukocytes in virus-infected mice.
    Yang H; Yogeeswaran G; Bukowski JF; Welsh RM
    Nat Immun Cell Growth Regul; 1985; 4(1):21-39. PubMed ID: 3875791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and target cell range of in vivo elicited blast natural killer cells.
    Biron CA; Pedersen KF; Welsh RM
    J Immunol; 1986 Jul; 137(2):463-71. PubMed ID: 3722814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of large granular T lymphocytes in vivo during viral infection.
    Biron CA; Natuk RJ; Welsh RM
    J Immunol; 1986 Mar; 136(6):2280-6. PubMed ID: 3485144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymphokine-activated killer cells. VII. IL-4 induces an NK1.1+CD8 alpha+beta- TCR-alpha beta B220+ lymphokine-activated killer subset.
    Ballas ZK; Rasmussen W
    J Immunol; 1993 Jan; 150(1):17-30. PubMed ID: 7678028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocytotoxic activity of lymphokine-activated killer cells: characterization of effector cells and susceptible targets.
    Suzuki H; Ikemoto M; Kamitani T; Hoshino K; Yano S
    Anticancer Res; 1989; 9(2):293-7. PubMed ID: 2568770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2.
    Mulé JJ; Yang JC; Afreniere RL; Shu SY; Rosenberg SA
    J Immunol; 1987 Jul; 139(1):285-94. PubMed ID: 3108401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells.
    Vujanovic NL; Herberman RB; Olszowy MW; Cramer DV; Salup RR; Reynolds CW; Hiserodt JC
    Cancer Res; 1988 Feb; 48(4):884-90. PubMed ID: 3257412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphokine-induced cytotoxicity: characterization of effectors, precursors, and regulatory ancillary cells.
    Ting CC; Yang SS; Hargrove ME
    Cancer Res; 1986 Feb; 46(2):513-8. PubMed ID: 3079663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.