These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28798844)

  • 1. SU-8 free-standing microfluidic probes.
    Kim AA; Kustanovich K; Baratian D; Ainla A; Shaali M; Jeffries GDM; Jesorka A
    Biomicrofluidics; 2017 Jan; 11(1):014112. PubMed ID: 28798844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sacrificial Layer Technique for Releasing Metallized Multilayer SU-8 Devices.
    Tatikonda A; Jokinen VP; Evard H; Franssila S
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30572576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low cost solution for the fabrication of dielectrophoretic microfluidic devices and embedded electrodes.
    Sano MB; Caldwell JL; Davalos RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8384-7. PubMed ID: 22256292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing.
    Lin H; Zhao Y; Lin S; Wang B; Yeung C; Cheng X; Wang Z; Cai T; Yu W; King K; Tan J; Salahi K; Hojaiji H; Emaminejad S
    Lab Chip; 2019 Sep; 19(17):2844-2853. PubMed ID: 31359008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low cost integration of 3D-electrode structures into microfluidic devices by replica molding.
    Mustin B; Stoeber B
    Lab Chip; 2012 Nov; 12(22):4702-8. PubMed ID: 23007263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Vertical Electrodes in Microfluidic Channels for Impedance Analysis.
    Li Q; Yuan YJ
    Micromachines (Basel); 2016 May; 7(6):. PubMed ID: 30404271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A; Agirregabiria M; Fernández LJ; Ruano-López JM; Barredo-Presa B
    Talanta; 2009 Nov; 80(1):24-30. PubMed ID: 19782188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Multilayer Molds by Dry Film Photoresist.
    Koucherian NE; Yan S; Hui EE
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability.
    Wang Y; den Toonder J; Cardinaels R; Anderson P
    Lab Chip; 2016 Jun; 16(12):2277-86. PubMed ID: 27210071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling.
    Liu Z; Qin S; Chen X; Chen D; Wang F
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost and versatile integration of microwire electrodes and optical waveguides into silicone elastomeric devices using modified xurographic methods.
    Liu J; Mahony JB; Selvaganapathy PR
    Microsyst Nanoeng; 2017; 3():17040. PubMed ID: 31057875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry Film Resist Laminated Microfluidic System for Electrical Impedance Measurements.
    Cao Y; Floehr J; Ingebrandt S; Schnakenberg U
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34072385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavily-Doped Bulk Silicon Sidewall Electrodes Embedded between Free-Hanging Microfluidic Channels by Modified Surface Channel Technology.
    Zhao Y; Veltkamp HW; Schut TVP; Sanders RGP; Breazu B; Groenesteijn J; de Boer MJ; Wiegerink RJ; Lötters JC
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography.
    Yin Z; Cheng E; Zou H
    Lab Chip; 2014 May; 14(9):1614-21. PubMed ID: 24647653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Implantable Microelectrode Array using Cyclic Olefin Copolymer and SU-8 via Photocrosslinking Lamination.
    Lee J; Jeong H; Lee T; Seo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.