These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28798844)

  • 21. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. μ-'Diving suit' for liquid-phase high-Q resonant detection.
    Yu H; Chen Y; Xu P; Xu T; Bao Y; Li X
    Lab Chip; 2016 Mar; 16(5):902-10. PubMed ID: 26829920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8.
    Williams HE; Freppon DJ; Kuebler SM; Rumpf RC; Melino MA
    Opt Express; 2011 Nov; 19(23):22910-22. PubMed ID: 22109168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices.
    Lachaux J; Alcaine C; Gómez-Escoda B; Perrault CM; Duplan DO; Wu PJ; Ochoa I; Fernandez L; Mercier O; Coudreuse D; Roy E
    Lab Chip; 2017 Jul; 17(15):2581-2594. PubMed ID: 28656191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips.
    Vulto P; Glade N; Altomare L; Bablet J; Tin LD; Medoro G; Chartier I; Manaresi N; Tartagni M; Guerrieri R
    Lab Chip; 2005 Feb; 5(2):158-62. PubMed ID: 15672129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems.
    Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 May; 11(10):1740-6. PubMed ID: 21451820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices.
    Silva BFB
    Phys Chem Chem Phys; 2017 Sep; 19(35):23690-23703. PubMed ID: 28828415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated Piezoelectric AlN Thin Film with SU-8/PDMS Supporting Layer for Flexible Sensor Array.
    Yeo HG; Jung J; Sim M; Jang JE; Choi H
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single layer graphene as an electrochemical platform.
    Ritzert NL; Li W; Tan C; Rodríguez-Calero GG; Rodríguez-López J; Hernández-Burgos K; Conte S; Parks JJ; Ralph DC; Abruña HD
    Faraday Discuss; 2014; 172():27-45. PubMed ID: 25426728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of composite thin films with microstructures of honeycomb, foam, and nanosphere arrays through adsorption and self-assembly of block copolymers at the liquid/liquid interface.
    Liu Y; Chen L; Geng Y; Lee YI; Li Y; Hao J; Liu HG
    J Colloid Interface Sci; 2013 Oct; 407():225-35. PubMed ID: 23891443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PDMS-film coated on PCB for AC impedance sensing of biological cells.
    Guo J; Li CM; Kang Y
    Biomed Microdevices; 2014 Oct; 16(5):681-6. PubMed ID: 24850232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold Nanoparticles-Coated SU-8 for Sensitive Fluorescence-Based Detections of DNA.
    Cao C; Birtwell SW; Høgberg J; Morgan H; Wolff A; Bang DD
    Diagnostics (Basel); 2012 Nov; 2(4):72-82. PubMed ID: 26859400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid metal enabled microfluidics.
    Khoshmanesh K; Tang SY; Zhu JY; Schaefer S; Mitchell A; Kalantar-Zadeh K; Dickey MD
    Lab Chip; 2017 Mar; 17(6):974-993. PubMed ID: 28225135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional closed microfluidic channel fabrication by stepper projection single step lithography: the diabolo effect.
    Larramendy F; Mazenq L; Temple-Boyer P; Nicu L
    Lab Chip; 2012 Jan; 12(2):387-90. PubMed ID: 22069055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould.
    Kim GM; Kim BJ; Ten Have ES; Segerink F; Van Hulst NF; Brugger J
    J Microsc; 2003 Mar; 209(Pt 3):267-71. PubMed ID: 12641773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.