These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28798844)

  • 41. Crack-Photolithography for Membrane-Free Diffusion-Based Micro/Nanofluidic Devices.
    Kim M; Kim T
    Anal Chem; 2015 Nov; 87(22):11215-23. PubMed ID: 26140611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density.
    Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording.
    Altuna A; Menendez de la Prida L; Bellistri E; Gabriel G; Guimerá A; Berganzo J; Villa R; Fernández LJ
    Biosens Bioelectron; 2012; 37(1):1-5. PubMed ID: 22633740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capillary-Based Microfluidic Fabrication of Liquid Metal Microspheres toward Functional Microelectrodes and Photothermal Medium.
    Lin P; Wei Z; Yan Q; Xie J; Fan Y; Wu M; Chen Y; Cheng Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25295-25305. PubMed ID: 31260237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sacrificial layer microfluidic device fabrication methods.
    Peeni BA; Lee ML; Hawkins AR; Woolley AT
    Electrophoresis; 2006 Dec; 27(24):4888-95. PubMed ID: 17117379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex three-dimensional high aspect ratio microfluidic network manufactured in combined PerMX dry-resist and SU-8 technology.
    Meier RCh; Badilita V; Brunne J; Wallrabe U; Korvink JG
    Biomicrofluidics; 2011 Sep; 5(3):34111-3411110. PubMed ID: 22662038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides.
    da Costa ET; Santos MSF; Jiao H; do Lago CL; Gutz IG; Garcia CD
    Electrophoresis; 2016 Jul; 37(12):1691-5. PubMed ID: 27028724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist.
    Futai N; Tamura M; Ogawa T; Tanaka M
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30586941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording.
    Pothof F; Anees S; Leupold J; Bonini L; Paul O; Orban GA; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5244-7. PubMed ID: 25571176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A sacrificial layer strategy for photolithography on highly hydrophobic surface and its application for electrowetting devices.
    Zhang H; Yan Q; Xu Q; Xiao C; Liang X
    Sci Rep; 2017 Jun; 7(1):3983. PubMed ID: 28638145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of MOF Thin Films at Miscible Liquid-Liquid Interface by Spray Method.
    Bai XJ; Chen D; Li LL; Shao L; He WX; Chen H; Li YN; Zhang XM; Zhang LY; Wang TQ; Fu Y; Qi W
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25960-25966. PubMed ID: 30051709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Planar thin film device for capillary electrophoresis.
    Peeni BA; Conkey DB; Barber JP; Kelly RT; Lee ML; Woolley AT; Hawkins AR
    Lab Chip; 2005 May; 5(5):501-5. PubMed ID: 15856085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.