BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28798850)

  • 1. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation.
    Zehnle S; Rombach M; Zengerle R; von Stetten F; Paust N
    Biomicrofluidics; 2017 Mar; 11(2):024114. PubMed ID: 28798850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugo-pneumatic multi-liquid aliquoting - parallel aliquoting and combination of multiple liquids in centrifugal microfluidics.
    Schwemmer F; Hutzenlaub T; Buselmeier D; Paust N; von Stetten F; Mark D; Zengerle R; Kosse D
    Lab Chip; 2015 Aug; 15(15):3250-8. PubMed ID: 26138211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Ibrahim F; Harun SW; Kazemzadeh A; Rothan HA; Yusof R; Madou M
    Lab Chip; 2015 Aug; 15(16):3358-69. PubMed ID: 26158597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs.
    Kinahan DJ; Kearney SM; Kilcawley NA; Early PL; Glynn MT; Ducrée J
    PLoS One; 2016; 11(5):e0155545. PubMed ID: 27167376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform.
    Zehnle S; Schwemmer F; Roth G; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2012 Dec; 12(24):5142-5. PubMed ID: 23108455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms.
    Mark D; Metz T; Haeberle S; Lutz S; Ducrée J; Zengerle R; von Stetten F
    Lab Chip; 2009 Dec; 9(24):3599-603. PubMed ID: 20024042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading.
    Godino N; Gorkin R; Linares AV; Burger R; Ducrée J
    Lab Chip; 2013 Feb; 13(4):685-94. PubMed ID: 23250328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrifugo-pneumatic sedimentation, re-suspension and transport of microparticles.
    Zhao Y; Schwemmer F; Zehnle S; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2015 Nov; 15(21):4133-7. PubMed ID: 26348615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.
    Deng Y; Fan J; Zhou S; Zhou T; Wu J; Li Y; Liu Z; Xuan M; Wu Y
    Biomicrofluidics; 2014 Mar; 8(2):024101. PubMed ID: 24753736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A valveless pneumatic fluid transfer technique applied to standard additions on a centrifugal microfluidic platform.
    Kong MC; Salin ED
    Anal Chem; 2011 Dec; 83(23):9186-90. PubMed ID: 22017201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely Precise Blood-Plasma Separation from Whole Blood on a Centrifugal Microfluidic Disk (Lab-on-a-Disk) Using Separator Gel.
    Hatami A; Saadatmand M
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
    Burger S; Schulz M; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2016 Jan; 16(2):261-8. PubMed ID: 26607320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust temperature change rate actuated valving and switching for highly integrated centrifugal microfluidics.
    Keller M; Czilwik G; Schott J; Schwarz I; Dormanns K; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2017 Feb; 17(5):864-875. PubMed ID: 28181607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phaseguide-assisted blood separation microfluidic device for point-of-care applications.
    Xu L; Lee H; Brasil Pinheiro MV; Schneider P; Jetta D; Oh KW
    Biomicrofluidics; 2015 Jan; 9(1):014106. PubMed ID: 25713688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-reactive protein and interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control.
    Zhao Y; Czilwik G; Klein V; Mitsakakis K; Zengerle R; Paust N
    Lab Chip; 2017 May; 17(9):1666-1677. PubMed ID: 28426080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform.
    Ducrée J
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34203926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on pneumatic operations in centrifugal microfluidics.
    Hess JF; Zehnle S; Juelg P; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2019 Nov; 19(22):3745-3770. PubMed ID: 31596297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated collection of double red blood cell units with a variable-volume separation chamber.
    Aubuchon JP; Dumont LJ; Herschel L; Roger J; Beddard RL; Taylor HL; Whitley PH; Sawyer SL; Graminske S; Martinson K; Dora R; Heldke S; Adamson J; Rose LE
    Transfusion; 2008 Jan; 48(1):147-52. PubMed ID: 17894787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring and actuation of a hybrid siphon valve for hematocrit-independent plasma separation from whole blood.
    Khodadadi R; Pishbin E; Eghbal M; Abrinia K
    Analyst; 2023 Oct; 148(21):5456-5468. PubMed ID: 37750420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability.
    Kim BJ; Lee YS; Zhbanov A; Yang S
    Analyst; 2019 Apr; 144(9):3144-3157. PubMed ID: 30942211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.