These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28798850)

  • 21. Elastic membrane enabled inward pumping for liquid manipulation on a centrifugal microfluidic platform.
    Liu Y; Kulinsky L; Shiri R; Madou M
    Biomicrofluidics; 2022 May; 16(3):034105. PubMed ID: 35607410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A new separation protocol (DRBCP-F) for automated blood component donation with the MCS 3p cell separator for collection of leukocyte depleted erythrocyte concentrates and plasma].
    Zeiler T; Kretschmer V
    Beitr Infusionsther Transfusionsmed; 1997; 34():118-22. PubMed ID: 9417335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of potassium in red blood cells using unmeasured volumes of whole blood and combined sodium/potassium-selective membrane electrode measurements.
    Pietrzak M; Meyerhoff ME
    Anal Chem; 2009 Jul; 81(14):5961-5. PubMed ID: 19601656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid and cost-efficient enumeration of rare cancer cells from whole blood by low-loss centrifugo-magnetophoretic purification under stopped-flow conditions.
    Kirby D; Glynn M; Kijanka G; Ducrée J
    Cytometry A; 2015 Jan; 87(1):74-80. PubMed ID: 25393340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform.
    Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J
    Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. More efficient exchange of sickle red blood cells can be achieved by exchanging the densest red blood cells: An ex vivo proof of concept study.
    Thibodeaux SR; Tanhehco YC; Irwin L; Jamensky L; Schell K; O'Doherty U
    Transfus Apher Sci; 2019 Feb; 58(1):100-106. PubMed ID: 30616959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems.
    Schwarz I; Zehnle S; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2016 May; 16(10):1873-85. PubMed ID: 27095248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic device for continuous, real time blood plasma separation.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated blood component collection with the MCS 3p cell separator: evaluation of three protocols for buffy coat-poor and white cell-reduced packed red cells and plasma.
    Zeiler TA; Kretschmer V
    Transfusion; 1997 Aug; 37(8):791-7. PubMed ID: 9280322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemolysis-free blood plasma separation.
    Son JH; Lee SH; Hong S; Park SM; Lee J; Dickey AM; Lee LP
    Lab Chip; 2014 Jul; 14(13):2287-92. PubMed ID: 24825250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lab-on-a-disk extraction of PBMC and metered plasma from whole blood: An advanced event-triggered valving strategy.
    Uddin R; Kinahan D; Ducrée J; Boisen A
    Biomicrofluidics; 2021 Dec; 15(6):064102. PubMed ID: 34804316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults.
    Linderkamp O; Versmold HT; Riegel KP; Betke K
    Pediatrics; 1984 Jul; 74(1):45-51. PubMed ID: 6204271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finger-actuated microfluidic device for the blood cross-matching test.
    Park J; Park JK
    Lab Chip; 2018 Apr; 18(8):1215-1222. PubMed ID: 29589005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood plasma separation in microfluidic channels using flow rate control.
    Yang S; Undar A; Zahn JD
    ASAIO J; 2005; 51(5):585-90. PubMed ID: 16322722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of the hematocrit using paper-based microfluidic devices.
    Berry SB; Fernandes SC; Rajaratnam A; DeChiara NS; Mace CR
    Lab Chip; 2016 Oct; 16(19):3689-94. PubMed ID: 27604182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of red blood cells at high volume concentration under low centrifugal accelerations.
    Lerche D; Bilsing R
    Biorheology; 1988; 25(1-2):245-52. PubMed ID: 3196820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.