These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 28798900)
1. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Seo B; Joo SH Nano Converg; 2017; 4(1):19. PubMed ID: 28798900 [TBL] [Abstract][Full Text] [Related]
2. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Miao M; Pan J; He T; Yan Y; Xia BY; Wang X Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426 [TBL] [Abstract][Full Text] [Related]
3. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. Yu J; Le TA; Tran NQ; Lee H Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541 [TBL] [Abstract][Full Text] [Related]
4. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. Li P; Yang Z; Shen J; Nie H; Cai Q; Li L; Ge M; Gu C; Chen X; Yang K; Zhang L; Chen Y; Huang S ACS Appl Mater Interfaces; 2016 Feb; 8(5):3543-50. PubMed ID: 26765150 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Jiang WJ; Tang T; Zhang Y; Hu JS Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Zhu J; Hu L; Zhao P; Lee LYS; Wong KY Chem Rev; 2020 Jan; 120(2):851-918. PubMed ID: 31657904 [TBL] [Abstract][Full Text] [Related]
7. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Khalafallah D; Zhi M; Hong Z Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243 [TBL] [Abstract][Full Text] [Related]
8. Active Site Engineering in Porous Electrocatalysts. Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550 [TBL] [Abstract][Full Text] [Related]
9. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Zhu YP; Guo C; Zheng Y; Qiao SZ Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437 [TBL] [Abstract][Full Text] [Related]
10. Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Ye Z; Yang J; Li B; Shi L; Ji H; Song L; Xu H Small; 2017 Jun; 13(21):. PubMed ID: 28398009 [TBL] [Abstract][Full Text] [Related]
12. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Guo Y; Park T; Yi JW; Henzie J; Kim J; Wang Z; Jiang B; Bando Y; Sugahara Y; Tang J; Yamauchi Y Adv Mater; 2019 Apr; 31(17):e1807134. PubMed ID: 30793387 [TBL] [Abstract][Full Text] [Related]
13. Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: challenges and future perspectives. Shahroudi A; Esfandiari M; Habibzadeh S RSC Adv; 2022 Oct; 12(45):29440-29468. PubMed ID: 36320757 [TBL] [Abstract][Full Text] [Related]
14. Boosting Hydrogen Evolution Reaction Activity of Amorphous Molybdenum Sulfide Under High Currents Via Preferential Electron Filling Induced by Tungsten Doping. Zhang D; Wang F; Zhao W; Cui M; Fan X; Liang R; Ou Q; Zhang S Adv Sci (Weinh); 2022 Sep; 9(27):e2202445. PubMed ID: 35876393 [TBL] [Abstract][Full Text] [Related]
15. Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Yang Y; Yu Y; Li J; Chen Q; Du Y; Rao P; Li R; Jia C; Kang Z; Deng P; Shen Y; Tian X Nanomicro Lett; 2021 Jul; 13(1):160. PubMed ID: 34302536 [TBL] [Abstract][Full Text] [Related]
16. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Morales-Guio CG; Hu X Acc Chem Res; 2014 Aug; 47(8):2671-81. PubMed ID: 25065612 [TBL] [Abstract][Full Text] [Related]
17. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Huang H; Yan M; Yang C; He H; Jiang Q; Yang L; Lu Z; Sun Z; Xu X; Bando Y; Yamauchi Y Adv Mater; 2019 Nov; 31(48):e1903415. PubMed ID: 31496036 [TBL] [Abstract][Full Text] [Related]
18. Scalable Synthesis of a Ruthenium-Based Electrocatalyst as a Promising Alternative to Pt for Hydrogen Evolution Reaction. Zhang Z; Li P; Feng Q; Wei B; Deng C; Fan J; Li H; Wang H ACS Appl Mater Interfaces; 2018 Sep; 10(38):32171-32179. PubMed ID: 30102022 [TBL] [Abstract][Full Text] [Related]
19. Various strategies to tune the electrocatalytic performance of molybdenum phosphide supported on reduced graphene oxide for hydrogen evolution reaction. Wu Z; Song M; Zhang Z; Wang J; Liu X J Colloid Interface Sci; 2019 Feb; 536():638-645. PubMed ID: 30391906 [TBL] [Abstract][Full Text] [Related]
20. Design Strategies for Large Current Density Hydrogen Evolution Reaction. Zhang L; Shi Z; Lin Y; Chong F; Qi Y Front Chem; 2022; 10():866415. PubMed ID: 35464231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]