These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28799334)

  • 1. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.
    Hains PG; Robinson PJ
    J Proteome Res; 2017 Sep; 16(9):3443-3447. PubMed ID: 28799334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine alkylation methods in shotgun proteomics and their possible effects on methionine residues.
    Kuznetsova KG; Levitsky LI; Pyatnitskiy MA; Ilina IY; Bubis JA; Solovyeva EM; Zgoda VG; Gorshkov MV; Moshkovskii SA
    J Proteomics; 2021 Jan; 231():104022. PubMed ID: 33096305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment.
    Woods AG; Sokolowska I; Darie CC
    Biochem Biophys Res Commun; 2012 Mar; 419(2):305-8. PubMed ID: 22342715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins.
    Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL
    Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of cysteine residue alkylation using an on-line LC-MS strategy: Benefits of using a cocktail of haloacetamide reagents.
    Murphy EL; Joy AP; Ouellette RJ; Barnett DA
    Anal Biochem; 2021 Apr; 619():114137. PubMed ID: 33582115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts].
    Kuznetsova KG; Solovyeva EM; Kuzikov AV; Gorshkov MV; Moshkovskii SA
    Biomed Khim; 2020 Jan; 66(1):18-29. PubMed ID: 32116223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents.
    Müller T; Winter D
    Mol Cell Proteomics; 2017 Jul; 16(7):1173-1187. PubMed ID: 28539326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Complexity? Cysteine Reduction and S-Alkylation in Proteomic Workflows: Practical Considerations.
    Evans CA
    Methods Mol Biol; 2019; 1977():83-97. PubMed ID: 30980324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics.
    Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C
    Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics.
    Suttapitugsakul S; Xiao H; Smeekens J; Wu R
    Mol Biosyst; 2017 Nov; 13(12):2574-2582. PubMed ID: 29019370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of overalkylation in enzymatic digestion on the qualitative and quantitative analysis of proteins].
    Wang J; Zhao X; Zhao Y; Ma C; Zhong R; Qian X; Ying W
    Se Pu; 2013 Oct; 31(10):927-33. PubMed ID: 24432633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An S-alkylating reagent with positive charges as an efficient solubilizer of denatured disulfide-containing proteins.
    Yamada H; Seno M; Kobayashi A; Moriyama T; Kosaka M; Ito Y; Imoto T
    J Biochem; 1994 Oct; 116(4):852-7. PubMed ID: 7883761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential alkylation-based redox proteomics--Lessons learnt.
    Wojdyla K; Rogowska-Wrzesinska A
    Redox Biol; 2015 Dec; 6():240-252. PubMed ID: 26282677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification.
    Sechi S; Chait BT
    Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity.
    Person MD; Mason DE; Liebler DC; Monks TJ; Lau SS
    Chem Res Toxicol; 2005 Jan; 18(1):41-50. PubMed ID: 15651848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis.
    Hale JE; Butler JP; Gelfanova V; You JS; Knierman MD
    Anal Biochem; 2004 Oct; 333(1):174-81. PubMed ID: 15351294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Shotgun' proteomic analyses without alkylation of cysteine.
    Wiśniewski JR; Zettl K; Pilch M; Rysiewicz B; Sadok I
    Anal Chim Acta; 2020 Mar; 1100():131-137. PubMed ID: 31987133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Precision Sulfur Metabolomics Innovated by a New Specific Probe for Trapping Reactive Sulfur Species.
    Kasamatsu S; Ida T; Koga T; Asada K; Motohashi H; Ihara H; Akaike T
    Antioxid Redox Signal; 2021 Jun; 34(18):1407-1419. PubMed ID: 33198504
    [No Abstract]   [Full Text] [Related]  

  • 19. Modification of Cysteine.
    Grant GA
    Curr Protoc Protein Sci; 2017 Feb; 87():15.1.1-15.1.23. PubMed ID: 28150879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new deuterated alkylating agent for quantitative proteomics.
    Sebastiano R; Citterio A; Lapadula M; Righetti PG
    Rapid Commun Mass Spectrom; 2003; 17(21):2380-6. PubMed ID: 14587083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.