These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 28799353)

  • 21. Size effect on nucleation rate for homogeneous crystallization of nanoscale water film.
    Lü Y; Zhang X; Chen M
    J Phys Chem B; 2013 Sep; 117(35):10241-9. PubMed ID: 23937546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-Step to One-Step Nucleation of a Zeolite through a Metastable Gyroid Mesophase.
    Kumar A; Molinero V
    J Phys Chem Lett; 2018 Oct; 9(19):5692-5697. PubMed ID: 30196700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural transformation in supercooled water controls the crystallization rate of ice.
    Moore EB; Molinero V
    Nature; 2011 Nov; 479(7374):506-8. PubMed ID: 22113691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Molecular Mechanism of Ice Nucleation on Model AgI Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2015 Jul; 119(29):9049-55. PubMed ID: 25255062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen-bond linking is crucial for growing ice VII embryos.
    Zhang X; Mochizuki K
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ice is born in low-mobility regions of supercooled liquid water.
    Fitzner M; Sosso GC; Cox SJ; Michaelides A
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2009-2014. PubMed ID: 30670640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does hydrophilicity of carbon particles improve their ice nucleation ability?
    Lupi L; Molinero V
    J Phys Chem A; 2014 Sep; 118(35):7330-7. PubMed ID: 24533525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters.
    Wang C; Wu J; Wang H; Zhang Z
    J Chem Phys; 2021 Jun; 154(23):234503. PubMed ID: 34241278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice formation on kaolinite: Insights from molecular dynamics simulations.
    Sosso GC; Tribello GA; Zen A; Pedevilla P; Michaelides A
    J Chem Phys; 2016 Dec; 145(21):211927. PubMed ID: 28799377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogeneous ice nucleation from supercooled water.
    Li T; Donadio D; Russo G; Galli G
    Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing key features in the formation of ice and gas hydrate systems.
    Liang S; Hall KW; Laaksonen A; Zhang Z; Kusalik PG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180167. PubMed ID: 30982452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.
    Lupi L; Kastelowitz N; Molinero V
    J Chem Phys; 2014 Nov; 141(18):18C508. PubMed ID: 25399173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.
    Cox SJ; Kathmann SM; Slater B; Michaelides A
    J Chem Phys; 2015 May; 142(18):184705. PubMed ID: 25978903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.