These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 28799369)

  • 1. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the homogeneous freezing of water.
    Murray BJ; Broadley SL; Wilson TW; Bull SJ; Wills RH; Christenson HK; Murray EJ
    Phys Chem Chem Phys; 2010 Sep; 12(35):10380-7. PubMed ID: 20577704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K.
    Kimmel GA; Xu Y; Brumberg A; Petrik NG; Smith RS; Kay BD
    J Chem Phys; 2019 May; 150(20):204509. PubMed ID: 31153179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous ice nucleation from supercooled water.
    Li T; Donadio D; Russo G; Galli G
    Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of crystallization by homogeneous nucleation of water droplets.
    Tanaka KK; Kimura Y
    Phys Chem Chem Phys; 2019 Jan; 21(5):2410-2418. PubMed ID: 30649109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface crystallization of supercooled water in clouds.
    Tabazadeh A; Djikaev YS; Reiss H
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15873-8. PubMed ID: 12456877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice nucleation rates near ∼225 K.
    Amaya AJ; Wyslouzil BE
    J Chem Phys; 2018 Feb; 148(8):084501. PubMed ID: 29495784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transformation in supercooled water controls the crystallization rate of ice.
    Moore EB; Molinero V
    Nature; 2011 Nov; 479(7374):506-8. PubMed ID: 22113691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation study of homogeneous ice nucleation in supercooled salty water.
    Soria GD; Espinosa JR; Ramirez J; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2018 Jun; 148(22):222811. PubMed ID: 29907042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.