These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28799380)

  • 1. A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit.
    Schweizer KS; Sussman DM
    J Chem Phys; 2016 Dec; 145(21):214903. PubMed ID: 28799380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entangled chain polymer liquids under continuous shear deformation: consequences of a microscopically anharmonic confining tube.
    Xie SJ; Schweizer KS
    Soft Matter; 2018 Aug; 14(34):7052-7063. PubMed ID: 30112537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communication: effects of stress on the tube confinement potential and dynamics of topologically entangled rod fluids.
    Sussman DM; Schweizer KS
    J Chem Phys; 2011 Oct; 135(13):131104. PubMed ID: 21992275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entangled polymer chain melts: orientation and deformation dependent tube confinement and interchain entanglement elasticity.
    Sussman DM; Schweizer KS
    J Chem Phys; 2013 Dec; 139(23):234904. PubMed ID: 24359390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: "A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit" [J. Chem. Phys. 145, 214903 (2016)].
    Schweizer KS; Sussman DM
    J Chem Phys; 2017 Jan; 146(1):019901. PubMed ID: 28063443
    [No Abstract]   [Full Text] [Related]  

  • 6. Microscopic theory of entangled polymer melt dynamics: flexible chains as primitive-path random walks and supercoarse grained needles.
    Sussman DM; Schweizer KS
    Phys Rev Lett; 2012 Oct; 109(16):168306. PubMed ID: 23215143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics of the Stress Overshoot and Chain Stretch Dynamics of Entangled Polymer Liquids Under Continuous Startup Nonlinear Shear.
    Schweizer KS; Xie SJ
    ACS Macro Lett; 2018 Feb; 7(2):218-222. PubMed ID: 35610896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model.
    Stephanou PS; Baig C; Tsolou G; Mavrantzas VG; Kröger M
    J Chem Phys; 2010 Mar; 132(12):124904. PubMed ID: 20370147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulling-force-induced elongation and alignment effects on entanglement and knotting characteristics of linear polymers in a melt.
    Panagiotou E; Kröger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042602. PubMed ID: 25375516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network.
    Wang SQ; Ravindranath S; Wang Y; Boukany P
    J Chem Phys; 2007 Aug; 127(6):064903. PubMed ID: 17705623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress relaxation in entangled polymer melts.
    Hou JX; Svaneborg C; Everaers R; Grest GS
    Phys Rev Lett; 2010 Aug; 105(6):068301. PubMed ID: 20868018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chain contraction and nonlinear stress damping in primitive chain network simulations.
    Furuichi K; Nonomura C; Masubuchi Y; Watanabe H
    J Chem Phys; 2010 Nov; 133(17):174902. PubMed ID: 21054064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic theory of the tube confinement potential for liquids of topologically entangled rigid macromolecules.
    Sussman DM; Schweizer KS
    Phys Rev Lett; 2011 Aug; 107(7):078102. PubMed ID: 21902432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology and microscopic topology of entangled polymeric liquids.
    Everaers R; Sukumaran SK; Grest GS; Svaneborg C; Sivasubramanian A; Kremer K
    Science; 2004 Feb; 303(5659):823-6. PubMed ID: 14764875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small angle neutron scattering observation of chain retraction after a large step deformation.
    Blanchard A; Graham RS; Heinrich M; Pyckhout-Hintzen W; Rciher D; Likhtman AE; McLeish TC; Read DJ; Straube E; Kohlbrecher J
    Phys Rev Lett; 2005 Oct; 95(16):166001. PubMed ID: 16281325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.
    Hsu HP; Kremer K
    ACS Macro Lett; 2018 Jan; 7(1):107-111. PubMed ID: 29503762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Challenges Facing the Current Paradigm Describing Viscoelastic Interactions in Polymer Melts.
    Ibar JP
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite cohesion due to chain entanglement in polymer melts.
    Cheng S; Lu Y; Liu G; Wang SQ
    Soft Matter; 2016 Apr; 12(14):3340-51. PubMed ID: 26931322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Molecular Dynamics of an Entangled Polyethylene Melt Undergoing Steady Shear Flow: Steady-State and Transient Dynamics.
    Nafar Sefiddashti MH; Edwards BJ; Khomami B
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. I. Linear polymer viscoelasticity.
    Lin YH; Das AK
    J Chem Phys; 2007 Feb; 126(7):074902. PubMed ID: 17328629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.