BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28799401)

  • 1. Overview: Understanding nucleation phenomena from simulations of lattice gas models.
    Binder K; Virnau P
    J Chem Phys; 2016 Dec; 145(21):211701. PubMed ID: 28799401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo tests of nucleation concepts in the lattice gas model.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053302. PubMed ID: 23767652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?
    Das SK; Egorov SA; Virnau P; Winter D; Binder K
    J Phys Condens Matter; 2018 Jun; 30(25):255001. PubMed ID: 29741496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo test of the classical theory for heterogeneous nucleation barriers.
    Winter D; Virnau P; Binder K
    Phys Rev Lett; 2009 Nov; 103(22):225703. PubMed ID: 20366110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic interfacial tension, contact angles, and line tensions: a graphics-processing-unit-based Monte Carlo study of the Ising model.
    Block BJ; Kim S; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062106. PubMed ID: 25615043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and growth of droplets at a liquid-gas interface.
    Nepomnyashchy AA; Golovin AA; Tikhomirova AE; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021605. PubMed ID: 17025444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic properties of a symmetrical binary mixture in the coexistence region.
    Das SK; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061607. PubMed ID: 22304102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case.
    Trobo ML; Albano EV; Binder K
    J Chem Phys; 2018 Mar; 148(11):114701. PubMed ID: 29566529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation.
    Spencer RK; Curry PF; Wickham RA
    J Chem Phys; 2016 Oct; 145(14):144902. PubMed ID: 27782527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous and heterogeneous nucleation of Lennard-Jones liquids.
    Wang H; Gould H; Klein W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031604. PubMed ID: 17930253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.
    Loeffler TD; Chen B
    J Chem Phys; 2013 Dec; 139(23):234707. PubMed ID: 24359386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled.
    Malek SM; Morrow GP; Saika-Voivod I
    J Chem Phys; 2015 Mar; 142(12):124506. PubMed ID: 25833595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation near the eutectic point in a Potts-lattice gas model.
    Agarwal V; Peters B
    J Chem Phys; 2014 Feb; 140(8):084111. PubMed ID: 24588152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy and the Tolman Parameter in Nucleation Theory.
    Schmelzer JWP; Abyzov AS; Baidakov VG
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.
    Wedekind J; Xu L; Buldyrev SV; Stanley HE; Reguera D; Franzese G
    Sci Rep; 2015 Jun; 5():11260. PubMed ID: 26095898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.