BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28799725)

  • 1. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess.
    Sundar MSL; Susmitha A; Rajan D; Hannibal S; Sasikumar K; Wendisch VF; Nampoothiri KM
    AMB Express; 2020 Apr; 10(1):68. PubMed ID: 32296988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.
    Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ
    Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in engineering Corynebacterium glutamicum for utilization of hemicellulosic biomass.
    Choi JW; Jeon EJ; Jeong KJ
    Curr Opin Biotechnol; 2019 Jun; 57():17-24. PubMed ID: 30537644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.
    Buschke N; Schröder H; Wittmann C
    Biotechnol J; 2011 Mar; 6(3):306-17. PubMed ID: 21298810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
    Lee J; Saddler JN; Um Y; Woo HM
    Microb Cell Fact; 2016 Jan; 15():20. PubMed ID: 26801253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain.
    Tenhaef N; Brüsseler C; Radek A; Hilmes R; Unrean P; Marienhagen J; Noack S
    Bioresour Technol; 2018 Nov; 268():332-339. PubMed ID: 30092487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum.
    Watanabe A; Hiraga K; Suda M; Yukawa H; Inui M
    Appl Environ Microbiol; 2015 Jun; 81(12):4173-83. PubMed ID: 25862223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
    Radek A; Krumbach K; Gätgens J; Wendisch VF; Wiechert W; Bott M; Noack S; Marienhagen J
    J Biotechnol; 2014 Dec; 192 Pt A():156-60. PubMed ID: 25304460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of xylonic acid by Klebsiella pneumoniae.
    Wang C; Wei D; Zhang Z; Wang D; Shi J; Kim CH; Jiang B; Han Z; Hao J
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10055-10063. PubMed ID: 27629123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for the production of xylonate.
    Cao Y; Xian M; Zou H; Zhang H
    PLoS One; 2013; 8(7):e67305. PubMed ID: 23861757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.