These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28799772)

  • 1. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.
    Chistyakov AA; Zvaigzne MA; Nikitenko VR; Tameev AR; Martynov IL; Prezhdo OV
    J Phys Chem Lett; 2017 Sep; 8(17):4129-4139. PubMed ID: 28799772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transport in strongly coupled quantum dot solids.
    Kagan CR; Murray CB
    Nat Nanotechnol; 2015 Dec; 10(12):1013-26. PubMed ID: 26551016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
    Yoon SJ; Guo Z; Dos Santos Claro PC; Shevchenko EV; Huang L
    ACS Nano; 2016 Jul; 10(7):7208-15. PubMed ID: 27387010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices.
    Bakulin AA; Neutzner S; Bakker HJ; Ottaviani L; Barakel D; Chen Z
    ACS Nano; 2013 Oct; 7(10):8771-9. PubMed ID: 24069878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks.
    Tiede DO; Romero-Pérez C; Koch KA; Ucer KB; Calvo ME; Srimath Kandada AR; Galisteo-López JF; Míguez H
    ACS Nano; 2024 Jan; 18(3):2325-2334. PubMed ID: 38206821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subdiffusive exciton transport in quantum dot solids.
    Akselrod GM; Prins F; Poulikakos LV; Lee EM; Weidman MC; Mork AJ; Willard AP; Bulović V; Tisdale WA
    Nano Lett; 2014 Jun; 14(6):3556-62. PubMed ID: 24807586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids.
    Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH
    Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius.
    Cassidy J; Zamkov M
    J Chem Phys; 2020 Mar; 152(11):110902. PubMed ID: 32199442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the exciton diffusion in semiconductor nanocrystal solids.
    Kholmicheva N; Moroz P; Bastola E; Razgoniaeva N; Bocanegra J; Shaughnessy M; Porach Z; Khon D; Zamkov M
    ACS Nano; 2015 Mar; 9(3):2926-37. PubMed ID: 25682881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits.
    Goswami PN; Mandal D; Rath AK
    Nanoscale; 2018 Jan; 10(3):1072-1080. PubMed ID: 29271437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Charge-Carrier Trapping Slows Förster Energy Transfer in CdSe/CdS Quantum-Dot Solids.
    Montanarella F; Biondi M; Hinterding SOM; Vanmaekelbergh D; Rabouw FT
    Nano Lett; 2018 Sep; 18(9):5867-5874. PubMed ID: 30095918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-Transport Mechanisms in CuInSe
    Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI
    ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Dots Coupled to an Oriented Two-Dimensional Crystalline Matrix for Solar Cell Application.
    Mandal D; Rath AK
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39074-39082. PubMed ID: 30350942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of all-inorganic CdSe quantum dot thin films for optoelectronic applications.
    Zhang YQ; Cao XA
    Nanotechnology; 2012 Jul; 23(27):275702. PubMed ID: 22705470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast exciton transport at early times in quantum dot solids.
    Zhang Z; Sung J; Toolan DTW; Han S; Pandya R; Weir MP; Xiao J; Dowland S; Liu M; Ryan AJ; Jones RAL; Huang S; Rao A
    Nat Mater; 2022 May; 21(5):533-539. PubMed ID: 35256791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Photo-Induced Charge Separation Enabled by Metal-Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors.
    Kim J; Kwon SM; Jo C; Heo JS; Kim WB; Jung HS; Kim YH; Kim MG; Park SK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16620-16629. PubMed ID: 32180407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.