These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28800003)

  • 1. Evaluation of tomographic image quality of extended and conventional parallel hole collimators using maximum likelihood expectation maximization algorithm by Monte Carlo simulations.
    Moslemi V; Ashoor M
    Nucl Med Commun; 2017 Oct; 38(10):843-853. PubMed ID: 28800003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and performance evaluation of a new high energy parallel hole collimator for radioiodine planar imaging by gamma cameras: Monte Carlo simulation study.
    Moslemi V; Ashoor M
    Ann Nucl Med; 2017 May; 31(4):324-334. PubMed ID: 28275975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.
    Abbaspour S; Tanha K; Mahmoudian B; Assadi M; Pirayesh Islamian J
    Appl Radiat Isot; 2018 Sep; 139():53-60. PubMed ID: 29704706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling.
    Van Holen R; Vandenberghe S; Staelens S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1989-2002. PubMed ID: 18356576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parallel-cone collimator for high-energy SPECT.
    Beijst C; Elschot M; Viergever MA; de Jong HW
    J Nucl Med; 2015 Mar; 56(3):476-82. PubMed ID: 25655627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.
    van der Velden S; Beijst C; Viergever MA; de Jong HW
    Med Phys; 2017 Jan; 44(1):249-261. PubMed ID: 28044322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.
    Mao Y; Yu Z; Zeng GL
    Med Phys; 2015 Sep; 42(9):5426-34. PubMed ID: 26328991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of reconstruction techniques in regional cerebral blood flow SPECT using trade-off plots: a Monte Carlo study.
    Olsson A; Arlig A; Carlsson GA; Gustafsson A
    Nucl Med Commun; 2007 Sep; 28(9):719-25. PubMed ID: 17667751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging.
    Si C; Mok GS; Chen L; Tsui BM
    Nucl Med Commun; 2016 Mar; 37(3):313-21. PubMed ID: 26528787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators.
    Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C
    Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study.
    Lazaro D; El Bitar Z; Breton V; Hill D; Buvat I
    Phys Med Biol; 2005 Aug; 50(16):3739-54. PubMed ID: 16077224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of optimally designed planar-concave collimators in single-photon emission tomography.
    Kimiaei S; Ljungberg M; Larsson SA
    Eur J Nucl Med; 1997 Nov; 24(11):1398-404. PubMed ID: 9371873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
    Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J
    Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators.
    Van Holen R; Staelens S; Vandenberghe S
    Med Phys; 2009 Sep; 36(9):4257-67. PubMed ID: 19810500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo-based SPECT reconstruction within the SIMIND framework.
    Gustafsson J; Brolin G; Ljungberg M
    Phys Med Biol; 2018 Dec; 63(24):245012. PubMed ID: 30523946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles.
    Dunning CAS; Bazalova-Carter M
    Med Phys; 2018 Jun; 45(6):2572-2582. PubMed ID: 29604070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-resolution multi-sensitivity design for parallel-hole SPECT collimators.
    Li Y; Xiao P; Zhu X; Xie Q
    Phys Med Biol; 2016 Jul; 61(14):5390-405. PubMed ID: 27359049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of reconstruction techniques for lung single photon emission tomography: a Monte Carlo study.
    Norberg P; Bake B; Jacobsson L; Carlsson GA; Gustafsson A
    Nucl Med Commun; 2007 Dec; 28(12):929-36. PubMed ID: 18090220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singular value decomposition analysis of back projection operator of maximum likelihood expectation maximization PET image reconstruction.
    Somai V; Legrady D; Tolnai G
    Radiol Oncol; 2018 Mar; 52(3):337-345. PubMed ID: 30210038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.