These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28800134)

  • 21. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates.
    Mason CJ; Klepzig KD; Kopper BJ; Kersten PJ; Illman BL; Raffa KF
    J Chem Ecol; 2015 Jun; 41(6):524-32. PubMed ID: 26003180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Putative origins of the fungus Leptographium procerum.
    Taerum SJ; Hoareau TB; Duong TA; de Beer ZW; Jankowiak R; Wingfield MJ
    Fungal Biol; 2017 Jan; 121(1):82-94. PubMed ID: 28007219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large shift in symbiont assemblage in the invasive red turpentine beetle.
    Taerum SJ; Duong TA; de Beer ZW; Gillette N; Sun JH; Owen DR; Wingfield MJ
    PLoS One; 2013; 8(10):e78126. PubMed ID: 24205124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.
    Goodsman DW; Erbilgin N; Lieffers VJ
    Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut bacteria are essential for development of an invasive bark beetle by regulating glucose transport.
    Liu F; Ye F; Yang Y; Kang Z; Liu Y; Chen W; Wang S; Kou H; Kang L; Sun J
    Proc Natl Acad Sci U S A; 2024 Aug; 121(33):e2410889121. PubMed ID: 39110737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of water potential and solute on the growth and interactions of two fungal symbionts of the mountain pine beetle.
    Bleiker KP; Six DL
    Mycol Res; 2009 Jan; 113(Pt 1):3-15. PubMed ID: 18640273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars.
    Vanderpool D; Bracewell RR; McCutcheon JP
    Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees.
    Lu Q; Decock C; Zhang XY; Maraite H
    Antonie Van Leeuwenhoek; 2009 Oct; 96(3):275-93. PubMed ID: 19404768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle.
    Bracewell RR; Six DL
    Microb Ecol; 2014 Nov; 68(4):859-70. PubMed ID: 25004995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of complementary defense metabolites reflects a co-evolutionary arms race between a host plant and a mutualistic bark beetle-fungal complex.
    Ullah A; Klutsch JG; Erbilgin N
    Plant Cell Environ; 2021 Sep; 44(9):3064-3077. PubMed ID: 34008191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts.
    Hulcr J; Mann R; Stelinski LL
    J Chem Ecol; 2011 Dec; 37(12):1374-7. PubMed ID: 22161224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources.
    Liu Y; Anastacio GR; Ishangulyyeva G; Rodriguez-Ramos JC; Erbilgin N
    Microb Ecol; 2021 May; 81(4):1106-1110. PubMed ID: 33404818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cascading speciation among mutualists and antagonists in a tree-beetle-fungi interaction.
    Bracewell RR; Vanderpool D; Good JM; Six DL
    Proc Biol Sci; 2018 Jun; 285(1881):. PubMed ID: 30051849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
    Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N
    Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel application of RNase H2-dependent quantitative PCR for detection and quantification of Grosmannia clavigera, a mountain pine beetle fungal symbiont, in environmental samples.
    McAllister CH; Fortier CE; St Onge KR; Sacchi BM; Nawrot MJ; Locke T; Cooke JEK
    Tree Physiol; 2018 Mar; 38(3):485-501. PubMed ID: 29329457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.
    Zhao T; Axelsson K; Krokene P; Borg-Karlson AK
    J Chem Ecol; 2015 Sep; 41(9):848-52. PubMed ID: 26302987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods.
    Lou QZ; Lu M; Sun JH
    Microb Ecol; 2014 Aug; 68(2):397-415. PubMed ID: 24691849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecology of root-feeding beetles and their associated fungi on longleaf pine in Georgia.
    Zanzot JW; Matusick G; Eckhardt LG
    Environ Entomol; 2010 Apr; 39(2):415-23. PubMed ID: 20388270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xyleborus volvulus (Coleoptera: Curculionidae): Biology and Fungal Associates.
    Cruz LF; Menocal O; Mantilla J; Ibarra-Juarez LA; Carrillo D
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The symbiotic complex of
    Durand AA; Constant P; Déziel E; Guertin C
    Bull Entomol Res; 2019 Dec; 109(6):723-732. PubMed ID: 30806338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.