BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 28800219)

  • 1. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Evolution of High-Performing Metal Organic Frameworks for Methane Adsorption.
    Beauregard N; Pardakhti M; Srivastava R
    J Chem Inf Model; 2021 Jul; 61(7):3232-3239. PubMed ID: 34264660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of CH
    Gülsoy Z; Sezginel KB; Uzun A; Keskin S; Yıldırım R
    ACS Comb Sci; 2019 Apr; 21(4):257-268. PubMed ID: 30821957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of MOFs with high deliverable capacity or internal surface area.
    Bao Y; Martin RL; Haranczyk M; Deem MW
    Phys Chem Chem Phys; 2015 May; 17(18):11962-73. PubMed ID: 25716343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Universal Machine Learning Algorithm for Large-Scale Screening of Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Froudakis GE
    J Am Chem Soc; 2020 Feb; 142(8):3814-3822. PubMed ID: 32017547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials.
    Guo W; Liu J; Dong F; Chen R; Das J; Ge W; Xu X; Hong H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Klontzas E; Froudakis G
    J Phys Chem A; 2019 Jul; 123(28):6080-6087. PubMed ID: 31264869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure.
    Fernandez M; Barnard AS
    ACS Comb Sci; 2016 May; 18(5):243-52. PubMed ID: 27022760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model.
    Anderson R; Biong A; Gómez-Gualdrón DA
    J Chem Theory Comput; 2020 Feb; 16(2):1271-1283. PubMed ID: 31922755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Sep; 110(36):17776-83. PubMed ID: 16956262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles, machine learning and symbolic regression modelling for organic molecule adsorption on two-dimensional CaO surface.
    Hu W; Zhang L
    J Mol Graph Model; 2023 Nov; 124():108530. PubMed ID: 37321063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting.
    Li L; Shi Z; Liang H; Liu J; Qiao Z
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of arsenic adsorption onto metal organic frameworks and adsorption mechanisms interpretation by machine learning.
    Xiong T; Cui J; Hou Z; Yuan X; Wang H; Chen J; Yang Y; Huang Y; Xu X; Su C; Leng L
    J Environ Manage; 2023 Dec; 347():119065. PubMed ID: 37801942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating the prediction of CO
    Orhan IB; Le TC; Babarao R; Thornton AW
    Commun Chem; 2023 Oct; 6(1):214. PubMed ID: 37789142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating CH
    Gulbalkan HC; Uzun A; Keskin S
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38082488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.
    Parkes MV; Staiger CL; Perry JJ; Allendorf MD; Greathouse JA
    Phys Chem Chem Phys; 2013 Jun; 15(23):9093-106. PubMed ID: 23646358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection.
    Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M
    Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.