These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28800231)

  • 1. Accurate Modeling of Water Clusters with Density-Functional Theory Using Atom-Centered Potentials.
    Holmes JD; Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2017 Sep; 13(9):4205-4215. PubMed ID: 28800231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters.
    Bryantsev VS; Diallo MS; van Duin AC; Goddard WA
    J Chem Theory Comput; 2009 Apr; 5(4):1016-26. PubMed ID: 26609610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree-Fock Methods Corrected with Atom-Centered Potentials.
    Prasad VK; Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2022 Apr; 18(4):2208-2232. PubMed ID: 35313106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmark Relative Energies for Large Water Clusters with the Generalized Energy-Based Fragmentation Method.
    Yuan D; Li Y; Ni Z; Pulay P; Li W; Li S
    J Chem Theory Comput; 2017 Jun; 13(6):2696-2704. PubMed ID: 28478670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree-Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems.
    Prasad VK; Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2018 Feb; 14(2):726-738. PubMed ID: 29262249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights.
    Zheng J; Zhao Y; Truhlar DG
    J Chem Theory Comput; 2009 Apr; 5(4):808-21. PubMed ID: 26609587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an Accurate and Inexpensive Estimation of CCSD(T)/CBS Binding Energies of Large Water Clusters.
    Sahu N; Singh G; Nandi A; Gadre SR
    J Phys Chem A; 2016 Jul; 120(28):5706-14. PubMed ID: 27351269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials.
    Prasad VK; Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2022 May; 18(5):2913-2930. PubMed ID: 35412817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT).
    Lao KU; Herbert JM
    J Chem Theory Comput; 2018 Oct; 14(10):5128-5142. PubMed ID: 30199632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.
    Leverentz HR; Qi HW; Truhlar DG
    J Chem Theory Comput; 2013 Feb; 9(2):995-1006. PubMed ID: 26588742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17.
    Miliordos E; Xantheas SS
    J Chem Phys; 2015 Jun; 142(23):234303. PubMed ID: 26093555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H2O)n, n = 3-10.
    Bates DM; Smith JR; Tschumper GS
    J Chem Theory Comput; 2011 Sep; 7(9):2753-60. PubMed ID: 26605466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ab initio benchmark study of hydrogen bonded formamide dimers.
    Frey JA; Leutwyler S
    J Phys Chem A; 2006 Nov; 110(45):12512-8. PubMed ID: 17091957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisit the landscape of protonated water clusters H
    Shi R; Li K; Su Y; Tang L; Huang X; Sai L; Zhao J
    J Chem Phys; 2018 May; 148(17):174305. PubMed ID: 29739201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers.
    Dahlke EE; Olson RM; Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small and efficient basis sets for the evaluation of accurate interaction energies: aromatic molecule-argon ground-state intermolecular potentials and rovibrational states.
    Cybulski H; Baranowska-Łączkowska A; Henriksen C; Fernández B
    J Phys Chem A; 2014 Nov; 118(44):10288-97. PubMed ID: 25317989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and analytic intermolecular potentials for Ar-CH(3)OH.
    Tasić U; Alexeev Y; Vayner G; Crawford TD; Windus TL; Hase WL
    Phys Chem Chem Phys; 2006 Oct; 8(40):4678-84. PubMed ID: 17047766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.