These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28800234)

  • 1. Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent Iodine.
    Koleda O; Broese T; Noetzel J; Roemelt M; Suna E; Francke R
    J Org Chem; 2017 Nov; 82(22):11669-11681. PubMed ID: 28800234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based on Ionically Tagged Phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol.
    Broese T; Francke R
    Org Lett; 2016 Nov; 18(22):5896-5899. PubMed ID: 27788013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction.
    Bieniek JC; Mashtakov B; Schollmeyer D; Waldvogel SR
    Chemistry; 2024 Feb; 30(7):e202303388. PubMed ID: 38018461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis.
    Elsherbini M; Wirth T
    Chemistry; 2018 Sep; 24(51):13399-13407. PubMed ID: 29655209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis.
    Chen C; Wang X; Yang T
    Front Chem; 2022; 10():883474. PubMed ID: 35494647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes.
    Berger M; Lenhard MS; Waldvogel SR
    Chemistry; 2022 Jul; 28(41):e202201029. PubMed ID: 35510825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically initiated oxidative amination of benzoxazoles using tetraalkylammonium halides as redox catalysts.
    Gao WJ; Li WC; Zeng CC; Tian HY; Hu LM; Little RD
    J Org Chem; 2014 Oct; 79(20):9613-8. PubMed ID: 25255384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically Enabled Selenium Catalytic Synthesis of 2,1-Benzoxazoles from
    Wang LW; Feng YF; Lin HM; Tang HT; Pan YM
    J Org Chem; 2021 Nov; 86(22):16121-16127. PubMed ID: 33599123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in iodine mediated electrochemical oxidative cross-coupling.
    Liu K; Song C; Lei A
    Org Biomol Chem; 2018 Apr; 16(14):2375-2387. PubMed ID: 29546915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Fluorocyclization of N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator.
    Haupt JD; Berger M; Waldvogel SR
    Org Lett; 2019 Jan; 21(1):242-245. PubMed ID: 30557030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates.
    Kong X; Lin L; Chen X; Chen Y; Wang W; Xu B
    ChemSusChem; 2021 Aug; 14(16):3277-3282. PubMed ID: 34292660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Use of Polyelectrolytes and Polymediators in Organic Electrosynthesis.
    Schille B; Giltzau NO; Francke R
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):422-426. PubMed ID: 29160932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A divergent and selective synthesis of isomeric benzoxazoles from a single N-Cl imine.
    Chen CY; Andreani T; Li H
    Org Lett; 2011 Dec; 13(23):6300-3. PubMed ID: 22067007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of tetrahydropyrroloiminoquinone alkaloids based on electrochemically generated hypervalent iodine oxidative cyclization.
    Inoue K; Ishikawa Y; Nishiyama S
    Org Lett; 2010 Feb; 12(3):436-9. PubMed ID: 20039698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights on the iodine(III)-mediated α-oxidation of ketones.
    Beaulieu S; Legault CY
    Chemistry; 2015 Jul; 21(31):11206-11. PubMed ID: 26118902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of NH-Sulfoximines by Using Recyclable Hypervalent Iodine(III) Reagents under Aqueous Micellar Conditions.
    Zhang G; Tan H; Chen W; Shen HC; Lu Y; Zheng C; Xu H
    ChemSusChem; 2020 Mar; 13(5):922-928. PubMed ID: 31950602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypervalent-Iodine(III)-Mediated Oxidative Methodology for the Synthesis of Fused Triazoles.
    Kamal R; Kumar V; Kumar R
    Chem Asian J; 2016 Jul; 11(14):1988-2000. PubMed ID: 27123538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides.
    Evindar G; Batey RA
    J Org Chem; 2006 Mar; 71(5):1802-8. PubMed ID: 16496964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.