These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 28800240)
1. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting. Oh S; Song H; Oh J Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240 [TBL] [Abstract][Full Text] [Related]
2. Silicon Photoanodes Partially Covered by Ni@Ni(OH) Xu G; Xu Z; Shi Z; Pei L; Yan S; Gu Z; Zou Z ChemSusChem; 2017 Jul; 10(14):2897-2903. PubMed ID: 28586139 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous Ultrathin In Yan G; Dong Y; Wu T; Xing S; Wang X ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787 [TBL] [Abstract][Full Text] [Related]
4. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279 [TBL] [Abstract][Full Text] [Related]
5. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554 [TBL] [Abstract][Full Text] [Related]
6. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Cai Q; Hong W; Jian C; Liu W Nanoscale; 2020 Apr; 12(14):7550-7556. PubMed ID: 32227016 [TBL] [Abstract][Full Text] [Related]
7. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation. Chen C; Lu Y; Fan R; Shen M ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054 [TBL] [Abstract][Full Text] [Related]
8. Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni-FeOOH Nanorods for Zero-Onset-Potential Water Splitting. Li B; Jian J; Chen J; Yu X; Sun J ACS Appl Mater Interfaces; 2020 Feb; 12(6):7038-7046. PubMed ID: 31967447 [TBL] [Abstract][Full Text] [Related]
9. Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Nam DH; Zhang JZ; Andrei V; Kornienko N; Heidary N; Wagner A; Nakanishi K; Sokol KP; Slater B; Zebger I; Hofmann S; Fontecilla-Camps JC; Park CB; Reisner E Angew Chem Int Ed Engl; 2018 Aug; 57(33):10595-10599. PubMed ID: 29888857 [TBL] [Abstract][Full Text] [Related]
10. Transparent Stacked Photoanodes with Efficient Light Management for Solar-Driven Photoelectrochemical Cells. Nguyen TT; Patel M; Kim S; Dao VA; Kim J ACS Appl Mater Interfaces; 2021 Mar; 13(8):10181-10190. PubMed ID: 33617239 [TBL] [Abstract][Full Text] [Related]
11. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. Zhang D; Shi J; Zi W; Wang P; Liu SF ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741 [TBL] [Abstract][Full Text] [Related]
13. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135 [TBL] [Abstract][Full Text] [Related]
14. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting. Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761 [TBL] [Abstract][Full Text] [Related]
15. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer. Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384 [TBL] [Abstract][Full Text] [Related]
16. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Sun K; Pang X; Shen S; Qian X; Cheung JS; Wang D Nano Lett; 2013 May; 13(5):2064-72. PubMed ID: 23574499 [TBL] [Abstract][Full Text] [Related]
17. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565 [TBL] [Abstract][Full Text] [Related]
18. Exploratory Study of Zn Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588 [TBL] [Abstract][Full Text] [Related]
20. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]