These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28800521)

  • 1. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity.
    Hafsi C; Falleh H; Saada M; Ksouri R; Abdelly C
    Plant Physiol Biochem; 2017 Sep; 118():609-617. PubMed ID: 28800521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions.
    Hidri R; Barea JM; Mahmoud OM; Abdelly C; Azcón R
    J Plant Physiol; 2016 Aug; 201():28-41. PubMed ID: 27393918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salicylic acid and H
    Jelali N; Ben Youssef R; Boukari N; Zorrig W; Dhifi W; Abdelly C
    Plant Physiol Biochem; 2021 Feb; 159():392-399. PubMed ID: 33293206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress.
    Bejaoui F; Salas JJ; Nouairi I; Smaoui A; Abdelly C; Martínez-Force E; Youssef NB
    J Plant Physiol; 2016 Jul; 198():32-8. PubMed ID: 27131842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.).
    Talbi Zribi O; Abdelly C; Debez A
    Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions.
    Elkhouni A; Rabhi M; Ivanov AG; Krol M; Zorrig W; Smaoui A; Abdelly C; Huner NPA
    Plant Biol (Stuttg); 2018 May; 20(3):415-425. PubMed ID: 29274120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of salinity on photosynthetic activity in potassium-deficient barley species.
    Degl'Innocenti E; Hafsi C; Guidi L; Navari-Izzo F
    J Plant Physiol; 2009 Dec; 166(18):1968-81. PubMed ID: 19604600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability.
    Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C
    J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.
    Penella C; Landi M; Guidi L; Nebauer SG; Pellegrini E; San Bautista A; Remorini D; Nali C; López-Galarza S; Calatayud A
    J Plant Physiol; 2016 Apr; 193():1-11. PubMed ID: 26918569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard.
    Iqbal N; Umar S; Per TS; Khan NA
    Plant Signal Behav; 2017 May; 12(5):e1297000. PubMed ID: 28537535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants.
    Farhat N; Ivanov AG; Krol M; Rabhi M; Smaoui A; Abdelly C; Hüner NP
    Planta; 2015 May; 241(5):1189-206. PubMed ID: 25637102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance.
    Ibrahim W; Qiu CW; Zhang C; Cao F; Shuijin Z; Wu F
    Physiol Plant; 2019 Feb; 165(2):155-168. PubMed ID: 30006979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance.
    Dugasa MT; Cao F; Ibrahim W; Wu F
    Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage.
    Zhang N; Shi X; Guan Z; Zhao S; Zhang F; Chen S; Fang W; Chen F
    Plant Physiol Biochem; 2016 Aug; 105():260-270. PubMed ID: 27173095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na
    Tang H; Niu L; Wei J; Chen X; Chen Y
    Front Plant Sci; 2019; 10():856. PubMed ID: 31333699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salinity induced changes in photosynthetic pigment and antioxidant responses in Sesuvium portulacastrum.
    Sivakumar T; Panneerselvam R
    Pak J Biol Sci; 2011 Nov; 14(21):967-75. PubMed ID: 22514886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of cerium on photosynthesis of maize seedlings under a combination of potassium deficiency and salt stress.
    Qu C; Liu C; Guo F; Hu C; Ze Y; Li C; Zhou Q; Hong F
    Biol Trace Elem Res; 2013 Oct; 155(1):104-13. PubMed ID: 23892731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco.
    Negi NP; Shrivastava DC; Sharma V; Sarin NB
    Plant Cell Rep; 2015 Jul; 34(7):1109-26. PubMed ID: 25712013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.