These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28800535)
1. Computational investigation of the nitrosation mechanism of piperazine in CO Yu Q; Wang P; Ma F; Xie HB; He N; Chen J Chemosphere; 2017 Nov; 186():341-349. PubMed ID: 28800535 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of N-nitrosopiperazine formation from nitrite and piperazine in CO2 capture. Goldman MJ; Fine NA; Rochelle GT Environ Sci Technol; 2013 Apr; 47(7):3528-34. PubMed ID: 23438967 [TBL] [Abstract][Full Text] [Related]
3. Nitrosamine formation in amine scrubbing at desorber temperatures. Fine NA; Goldman MJ; Rochelle GT Environ Sci Technol; 2014; 48(15):8777-83. PubMed ID: 24956458 [TBL] [Abstract][Full Text] [Related]
4. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Dai N; Shah AD; Hu L; Plewa MJ; McKague B; Mitch WA Environ Sci Technol; 2012 Sep; 46(17):9793-801. PubMed ID: 22831707 [TBL] [Abstract][Full Text] [Related]
5. Role of absorber and desorber units and operational conditions for N-nitrosamine formation during amine-based carbon capture. Wang Z; Zhang Z; Mitch WA Water Res; 2020 Mar; 170():115299. PubMed ID: 31760360 [TBL] [Abstract][Full Text] [Related]
6. Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. Ma F; Ding Z; Elm J; Xie HB; Yu Q; Liu C; Li C; Fu Z; Zhang L; Chen J Environ Sci Technol; 2018 Sep; 52(17):9801-9809. PubMed ID: 30063348 [TBL] [Abstract][Full Text] [Related]
7. Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO2 capture systems. Dai N; Mitch WA Environ Sci Technol; 2014 Jul; 48(13):7519-26. PubMed ID: 24918477 [TBL] [Abstract][Full Text] [Related]
8. Influence of amine structural characteristics on N-nitrosamine formation potential relevant to postcombustion CO2 capture systems. Dai N; Mitch WA Environ Sci Technol; 2013 Nov; 47(22):13175-83. PubMed ID: 24138561 [TBL] [Abstract][Full Text] [Related]
9. Nitrosation by peroxynitrite: use of phenol as a probe. Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159 [TBL] [Abstract][Full Text] [Related]
10. Decomposition of nitrosamines in CO2 capture by aqueous piperazine or monoethanolamine. Fine NA; Nielsen PT; Rochelle GT Environ Sci Technol; 2014 May; 48(10):5996-6002. PubMed ID: 24730662 [TBL] [Abstract][Full Text] [Related]
11. Influence of Dissolved Metals on N-Nitrosamine Formation under Amine-based CO2 Capture Conditions. Wang Z; Mitch WA Environ Sci Technol; 2015 Oct; 49(19):11974-81. PubMed ID: 26335609 [TBL] [Abstract][Full Text] [Related]
12. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C. Conway W; Fernandes D; Beyad Y; Burns R; Lawrance G; Puxty G; Maeder M J Phys Chem A; 2013 Feb; 117(5):806-13. PubMed ID: 23286883 [TBL] [Abstract][Full Text] [Related]
13. Nitrosamine Formation in Amine-Based CO Shi H; Supap T; Idem R; Gelowitz D; Campbell C; Ball M Environ Sci Technol; 2017 Jul; 51(13):7723-7731. PubMed ID: 28581734 [TBL] [Abstract][Full Text] [Related]
14. Reaction kinetics of CO Chen X; Jing G; Lv B; Zhou Z J Environ Sci (China); 2025 Apr; 150():622-631. PubMed ID: 39306434 [TBL] [Abstract][Full Text] [Related]
15. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. Ma F; Xie HB; Elm J; Shen J; Chen J; Vehkamäki H Environ Sci Technol; 2019 Aug; 53(15):8785-8795. PubMed ID: 31287292 [TBL] [Abstract][Full Text] [Related]
16. Carbon dioxide in the nitrosation of amine: catalyst or inhibitor? Sun Z; Liu YD; Zhong RG J Phys Chem A; 2011 Jul; 115(26):7753-64. PubMed ID: 21667950 [TBL] [Abstract][Full Text] [Related]
17. Rapid formation of N-nitrosamines from nitrogen oxides under neutral and alkaline conditions. Challis BC; Edwards A; Hunma RR; Kyrtopoulos SA; Outram JR IARC Sci Publ (1971); 1978; (19):127-42. PubMed ID: 28274 [TBL] [Abstract][Full Text] [Related]
18. [Experimental study on CO2 absorption by aqueous ammonia-based blended absorbent]. Xia ZX; Xiang QY; Zhou XP; Fang MX Huan Jing Ke Xue; 2014 Jul; 35(7):2508-14. PubMed ID: 25244831 [TBL] [Abstract][Full Text] [Related]
19. Improved solvent formulations for efficient CO₂ absorption and low-temperature desorption. Barzagli F; Di Vaira M; Mani F; Peruzzini M ChemSusChem; 2012 Sep; 5(9):1724-31. PubMed ID: 22778091 [TBL] [Abstract][Full Text] [Related]
20. Solid State Kinetics of Nitrosation Using Native Sources of Nitrite. Carloni LE; Lochner S; Sterckx H; Van Daele T J Pharm Sci; 2023 May; 112(5):1324-1332. PubMed ID: 36828125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]