BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28800611)

  • 1. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.
    Chen Y; Zeng S; Hu R; Wang X; Huang W; Liu J; Wang L; Liu G; Cao Y; Zhang Y
    PLoS One; 2017; 12(8):e0182528. PubMed ID: 28800611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio).
    Uusi-Mäkelä MIE; Barker HR; Bäuerlein CA; Häkkinen T; Nykter M; Rämet M
    PLoS One; 2018; 13(4):e0196238. PubMed ID: 29684067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of zebrafish models by CRISPR /Cas9 genome editing.
    Hruscha A; Schmid B
    Methods Mol Biol; 2015; 1254():341-50. PubMed ID: 25431076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.
    Lee RT; Ng AS; Ingham PW
    PLoS One; 2016; 11(11):e0166020. PubMed ID: 27832146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and
    Hu P; Zhao X; Zhang Q; Li W; Zu Y
    G3 (Bethesda); 2018 Mar; 8(3):823-831. PubMed ID: 29295818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Functional Genetic Study Models in Zebrafish Using CRISPR-Cas9.
    Carmona-Aldana F; Nuñez-Martinez HN; Peralta-Alvarez CA; Tapia-Urzua G; Recillas-Targa F
    Methods Mol Biol; 2021; 2174():255-262. PubMed ID: 32813255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
    Amorim JP; Bordeira-Carriço R; Gali-Macedo A; Perrod C; Bessa J
    STAR Protoc; 2020 Dec; 1(3):100208. PubMed ID: 33377102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA.
    Zhou W; Brown W; Bardhan A; Delaney M; Ilk AS; Rauen RR; Kahn SI; Tsang M; Deiters A
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8998-9003. PubMed ID: 32160370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos.
    Naert T; Tulkens D; Edwards NA; Carron M; Shaidani NI; Wlizla M; Boel A; Demuynck S; Horb ME; Coucke P; Willaert A; Zorn AM; Vleminckx K
    Sci Rep; 2020 Sep; 10(1):14662. PubMed ID: 32887910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of CRISPR gene-editing tools in zebrafish.
    Uribe-Salazar JM; Kaya G; Sekar A; Weyenberg K; Ingamells C; Dennis MY
    BMC Genomics; 2022 Jan; 23(1):12. PubMed ID: 34986794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs.
    Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions.
    Zhang W; Petri K; Ma J; Lee H; Tsai CL; Joung JK; Yeh JJ
    Elife; 2024 Jun; 12():. PubMed ID: 38847802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells.
    Zhang F; Li X; He M; Ye D; Xiong F; Amin G; Zhu Z; Sun Y
    J Genet Genomics; 2020 Jan; 47(1):37-47. PubMed ID: 32094061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic Expression and Genome Editing by Electroporation of Zebrafish Embryos.
    Zhang C; Ren Z; Gong Z
    Mar Biotechnol (NY); 2020 Oct; 22(5):644-650. PubMed ID: 32748174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish.
    Vejnar CE; Moreno-Mateos MA; Cifuentes D; Bazzini AA; Giraldez AJ
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control.
    Mianné J; Codner GF; Caulder A; Fell R; Hutchison M; King R; Stewart ME; Wells S; Teboul L
    Methods; 2017 May; 121-122():68-76. PubMed ID: 28363792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.