These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
504 related articles for article (PubMed ID: 28800684)
1. Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna. Nedrich SM; Burton GA Environ Pollut; 2017 Nov; 230():1116-1124. PubMed ID: 28800684 [TBL] [Abstract][Full Text] [Related]
2. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels. Nedrich SM; Burton GA Environ Toxicol Chem; 2017 Sep; 36(9):2456-2464. PubMed ID: 28262986 [TBL] [Abstract][Full Text] [Related]
3. Metal Toxicity During Short-Term Sediment Resuspension and Redeposition in a Tropical Reservoir. Cervi EC; Hudson M; Rentschler A; Burton GA Environ Toxicol Chem; 2019 Jul; 38(7):1476-1485. PubMed ID: 31017692 [TBL] [Abstract][Full Text] [Related]
4. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments. Fetters KJ; Costello DM; Hammerschmidt CR; Burton GA Environ Toxicol Chem; 2016 Mar; 35(3):676-86. PubMed ID: 26313755 [TBL] [Abstract][Full Text] [Related]
5. Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow-Through Conditions. Harrison AM; Hudson ML; Burton GA Environ Toxicol Chem; 2019 Nov; 38(11):2447-2458. PubMed ID: 31369691 [TBL] [Abstract][Full Text] [Related]
6. Biogeochemical controls on the speciation and aquatic toxicity of vanadium and other metals in sediments from a river reservoir. Nedrich SM; Chappaz A; Hudson ML; Brown SS; Burton GA Sci Total Environ; 2018 Jan; 612():313-320. PubMed ID: 28854387 [TBL] [Abstract][Full Text] [Related]
7. Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food. Nguyen LT; Muyssen BT; Janssen CR Chemosphere; 2012 Mar; 87(1):84-90. PubMed ID: 22197310 [TBL] [Abstract][Full Text] [Related]
8. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778 [TBL] [Abstract][Full Text] [Related]
9. Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT). Amato ED; Simpson SL; Remaili TM; Spadaro DA; Jarolimek CV; Jolley DF Environ Sci Technol; 2016 Mar; 50(6):3055-64. PubMed ID: 26848961 [TBL] [Abstract][Full Text] [Related]
10. Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS-SEM metal-sulfide paradigm. Remaili TM; Yin N; Bennett WW; Simpson SL; Jolley DF; Welsh DT Environ Sci Process Impacts; 2018 Sep; 20(9):1285-1296. PubMed ID: 30175344 [TBL] [Abstract][Full Text] [Related]
11. Effects of cyclic changes in pH and salinity on metals release from sediments. Hong YS; Kinney KA; Reible DD Environ Toxicol Chem; 2011 Aug; 30(8):1775-84. PubMed ID: 21590797 [TBL] [Abstract][Full Text] [Related]
12. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524 [TBL] [Abstract][Full Text] [Related]
13. Copper Sediment Toxicity and Partitioning during Oxidation in a Flow-Through Flume. Costello DM; Hammerschmidt CR; Burton GA Environ Sci Technol; 2015 Jun; 49(11):6926-33. PubMed ID: 25966043 [TBL] [Abstract][Full Text] [Related]
14. Refining our understanding of metal bioavailability in sediments using information from porewater: Application of a multimetal biotic ligand model as an extension of the equilibrium partitioning sediment benchmarks. Santore RC; Toll JE; DeForest DK; Croteau K; Baldwin A; Bergquist B; McPeek K; Tobiason K; Judd NL Integr Environ Assess Manag; 2022 Sep; 18(5):1335-1347. PubMed ID: 34953029 [TBL] [Abstract][Full Text] [Related]
15. [Effect of zinc-enriched sediments, in open and isolated systems, on three species of benthonic invertebrates]. Galar Martínez M; Martínez-Tabche L; Sánchez-Hidalgo E; López López E Rev Biol Trop; 2006 Jun; 54(2):451-60. PubMed ID: 18494315 [TBL] [Abstract][Full Text] [Related]
16. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments. Besser JM; Brumbaugh WG; Ingersoll CG; Ivey CD; Kunz JL; Kemble NE; Schlekat CE; Garman ER Environ Toxicol Chem; 2013 Nov; 32(11):2495-506. PubMed ID: 23657897 [TBL] [Abstract][Full Text] [Related]
17. Laboratory and Field-Based Assessment of the Effects of Sediment Capping Materials on Zinc Flux, Bioavailability, and Toxicity. Cervi EC; Thiamkeelakul K; Hudson M; Rentschler A; Nedrich S; Brown SS; Burton GA Environ Toxicol Chem; 2020 Jan; 39(1):240-249. PubMed ID: 31610605 [TBL] [Abstract][Full Text] [Related]
18. Validation of a new standardized test method for the freshwater amphipod Hyalella azteca: Determining the chronic effects of silver in sediment. Taylor LN; Novak L; Rendas M; Antunes PM; Scroggins RP Environ Toxicol Chem; 2016 Oct; 35(10):2430-2438. PubMed ID: 27062160 [TBL] [Abstract][Full Text] [Related]
19. Toxicity assessment of typical polycyclic aromatic hydrocarbons to Daphnia magna and Hyalella azteca in water-only and sediment-water exposure systems. Tani K; Watanabe H; Noguchi M; Hiki K; Yamagishi T; Tatarazako N; Yamamoto H Sci Total Environ; 2021 Aug; 784():147156. PubMed ID: 34088053 [TBL] [Abstract][Full Text] [Related]
20. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Hutchins CM; Teasdale PR; Lee J; Simpson SL Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]