These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28800687)
61. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Rastogi RP; Madamwar D; Incharoensakdi A Front Microbiol; 2015; 6():1254. PubMed ID: 26635737 [TBL] [Abstract][Full Text] [Related]
62. Niche separation of Baltic Sea cyanobacteria during bloom events by species interactions and autecological preferences. Eigemann F; Schwartke M; Schulz-Vogt H Harmful Algae; 2018 Feb; 72():65-73. PubMed ID: 29413385 [TBL] [Abstract][Full Text] [Related]
63. Remote estimation of cyanobacterial blooms using the risky grade index (RGI) and coverage area index (CAI): a case study in the Three Gorges Reservoir, China. Zhou B; Shang M; Wang G; Feng L; Shan K; Liu X; Wu L; Zhang X Environ Sci Pollut Res Int; 2017 Aug; 24(23):19044-19056. PubMed ID: 28660506 [TBL] [Abstract][Full Text] [Related]
64. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes. Glibert PM Mar Pollut Bull; 2017 Nov; 124(2):591-606. PubMed ID: 28434665 [TBL] [Abstract][Full Text] [Related]
65. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652 [TBL] [Abstract][Full Text] [Related]
66. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Leigh C; Burford MA; Roberts DT; Udy JW Water Res; 2010 Aug; 44(15):4487-96. PubMed ID: 20598731 [TBL] [Abstract][Full Text] [Related]
67. Survival of cyanobacteria in rivers following their release in water from large headwater reservoirs. Williamson N; Kobayashi T; Outhet D; Bowling LC Harmful Algae; 2018 May; 75():1-15. PubMed ID: 29778219 [TBL] [Abstract][Full Text] [Related]
68. Plankton community succession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils. Yan Q; Yu Y; Feng W; Pan G; Chen H; Chen J; Yang B; Li X; Zhang X Microb Ecol; 2009 Jul; 58(1):47-55. PubMed ID: 18777048 [TBL] [Abstract][Full Text] [Related]
69. The use of pigment "fingerprints" in the study of harmful algal blooms. Bustillos-Guzmán J; Gárate-Lizárraga I; López-Cortés D; Hernández-Sandoval F Rev Biol Trop; 2004 Sep; 52 Suppl 1():17-26. PubMed ID: 17465114 [TBL] [Abstract][Full Text] [Related]
70. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sòria-Perpinyà X; Vicente E; Urrego P; Pereira-Sandoval M; Ruíz-Verdú A; Delegido J; Soria JM; Moreno J Sci Total Environ; 2020 Jan; 698():134305. PubMed ID: 31514039 [TBL] [Abstract][Full Text] [Related]
71. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Qin B; Li W; Zhu G; Zhang Y; Wu T; Gao G J Hazard Mater; 2015 Apr; 287():356-63. PubMed ID: 25679801 [TBL] [Abstract][Full Text] [Related]
72. Nanobiotechnology for the Environment: Innovative Solutions for the Management of Harmful Algal Blooms. Gellert MR; Kim BJ; Reffsin SE; Jusuf SE; Wagner ND; Winans SC; Wu M J Agric Food Chem; 2018 Jul; 66(26):6474-6479. PubMed ID: 29160704 [TBL] [Abstract][Full Text] [Related]
73. Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA. Berry DL; Goleski JA; Koch F; Wall CC; Peterson BJ; Anderson OR; Gobler CJ Microb Ecol; 2015 Aug; 70(2):361-71. PubMed ID: 25661475 [TBL] [Abstract][Full Text] [Related]
74. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. Berg KA; Lyra C; Sivonen K; Paulin L; Suomalainen S; Tuomi P; Rapala J ISME J; 2009 Mar; 3(3):314-25. PubMed ID: 19020559 [TBL] [Abstract][Full Text] [Related]
75. Molecular characterization of cyanobacterial diversity and yearly fluctuations of Microcystin loads in a suburban Mediterranean Lake (Lake Pamvotis, Greece). Vareli K; Pilidis G; Mavrogiorgou MC; Briasoulis E; Sainis I J Environ Monit; 2009 Aug; 11(8):1506-12. PubMed ID: 19657535 [TBL] [Abstract][Full Text] [Related]
76. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Chislock MF; Sarnelle O; Jernigan LM; Wilson AE Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484 [TBL] [Abstract][Full Text] [Related]
77. Interactions between Ciliate Species and Kosiba J; Krztoń W; Koreiviené J; Tarcz S; Wilk-Woźniak E Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429814 [No Abstract] [Full Text] [Related]
78. Phytoplankton composition with an emphasis of Cyanobacteria and their toxins as an indicator for the ecological status of Lake Vaya (Bulgaria) - part of the Via Pontica migration route. Teneva I; Belkinova D; Mladenov R; Stoyanov P; Moten D; Basheva D; Kazakov S; Dzhambazov B Biodivers Data J; 2020; 8():e57507. PubMed ID: 33376439 [TBL] [Abstract][Full Text] [Related]
79. Influence of sunlight on the proliferation of cyanobacterial blooms and its potential applications in Lake Taihu, China. Zhou Q; Chen W; Shan K; Zheng L; Song L J Environ Sci (China); 2014 Mar; 26(3):626-35. PubMed ID: 25079276 [TBL] [Abstract][Full Text] [Related]
80. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. Ma J; Qin B; Wu P; Zhou J; Niu C; Deng J; Niu H J Environ Sci (China); 2015 Jan; 27():80-6. PubMed ID: 25597665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]