These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28800687)
81. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. Haakonsson S; Rodríguez-Gallego L; Somma A; Bonilla S Sci Total Environ; 2017 Dec; 609():1132-1139. PubMed ID: 28787786 [TBL] [Abstract][Full Text] [Related]
82. Future increase in harmful algal blooms in the North Sea due to climate change. Peperzak L Water Sci Technol; 2005; 51(5):31-6. PubMed ID: 15918356 [TBL] [Abstract][Full Text] [Related]
83. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Zhang M; Duan H; Shi X; Yu Y; Kong F Water Res; 2012 Feb; 46(2):442-52. PubMed ID: 22123520 [TBL] [Abstract][Full Text] [Related]
84. In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake. Qiu T; Xie P; Ke Z; Li L; Guo L Toxicon; 2007 Sep; 50(3):365-76. PubMed ID: 17572463 [TBL] [Abstract][Full Text] [Related]
85. Occurrence and potential risks of harmful algal blooms in the East China Sea. Wang J; Wu J Sci Total Environ; 2009 Jun; 407(13):4012-21. PubMed ID: 19406453 [TBL] [Abstract][Full Text] [Related]
87. Toxic effects of cyanotoxins in teleost fish: A comprehensive review. Banerjee S; Maity S; Guchhait R; Chatterjee A; Biswas C; Adhikari M; Pramanick K Aquat Toxicol; 2021 Nov; 240():105971. PubMed ID: 34560410 [TBL] [Abstract][Full Text] [Related]
88. Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the North Atlantic Landscape Conservation Cooperative region. Pinkney AE; Driscoll CT; Evers DC; Hooper MJ; Horan J; Jones JW; Lazarus RS; Marshall HG; Milliken A; Rattner BA; Schmerfeld J; Sparling DW Integr Environ Assess Manag; 2015 Jul; 11(3):355-69. PubMed ID: 25556986 [TBL] [Abstract][Full Text] [Related]
89. Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Gkelis S; Zaoutsos N Toxicon; 2014 Feb; 78():1-9. PubMed ID: 24275084 [TBL] [Abstract][Full Text] [Related]
90. Methodology for forecast and control of coastal harmful algal blooms by embedding a compound eutrophication index into the ecological risk index. Lin G; Xu X; Wang P; Liang S; Li Y; Su Y; Li K; Wang X Sci Total Environ; 2020 Sep; 735():139404. PubMed ID: 32473442 [TBL] [Abstract][Full Text] [Related]
91. Monitoring studies should consider temporal variability to reveal relations between cyanobacterial abundance and environmental variables. Wojciechowski J; Padial AA An Acad Bras Cienc; 2015 Sep; 87(3):1717-26. PubMed ID: 26221987 [TBL] [Abstract][Full Text] [Related]
92. Carotenoid pigments as tracers of cyanobacterial blooms in recent and postglacial sediments of the Baltic Sea. Poutanen EL; Nikkilä K Ambio; 2001 Aug; 30(4-5):179-83. PubMed ID: 11697247 [TBL] [Abstract][Full Text] [Related]
93. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes. Bowling LC; Shaikh M; Brayan J; Malthus T Environ Monit Assess; 2017 Sep; 189(10):495. PubMed ID: 28887739 [TBL] [Abstract][Full Text] [Related]
94. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Moradi M Mar Pollut Bull; 2014 Oct; 87(1-2):311-322. PubMed ID: 25148755 [TBL] [Abstract][Full Text] [Related]
95. Can participatory approaches strengthen the monitoring of cyanobacterial blooms in developing countries? Results from a pilot study conducted in the Lagoon Aghien (Ivory Coast). Mitroi V; Ahi KC; Bulot PY; Tra F; Deroubaix JF; Ahoutou MK; Quiblier C; Koné M; Coulibaly Kalpy J; Humbert JF PLoS One; 2020; 15(9):e0238832. PubMed ID: 32970701 [TBL] [Abstract][Full Text] [Related]
96. Cyanobacterial Toxins and Cyanopeptide Transformation Kinetics by Singlet Oxygen and pH-Dependence in Sunlit Surface Waters. Natumi R; Dieziger C; Janssen EM Environ Sci Technol; 2021 Nov; 55(22):15196-15205. PubMed ID: 34714625 [TBL] [Abstract][Full Text] [Related]
97. Influence of monoterpenoids on the growth of freshwater cyanobacteria. Balcerzak L; Lochyński S; Lipok J Appl Microbiol Biotechnol; 2021 Jul; 105(13):5675-5687. PubMed ID: 34164714 [TBL] [Abstract][Full Text] [Related]
98. Relative impacts of fishing and eutrophication on coastal fish assessed by comparing a no-take area with an environmental gradient. Bergström L; Karlsson M; Bergström U; Pihl L; Kraufvelin P Ambio; 2019 Jun; 48(6):565-579. PubMed ID: 30523568 [TBL] [Abstract][Full Text] [Related]
99. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. Romanis CS; Pearson LA; Neilan BA J Microbiol Methods; 2021 Jan; 180():106123. PubMed ID: 33316292 [TBL] [Abstract][Full Text] [Related]
100. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. Haraldsson M; Gerphagnon M; Bazin P; Colombet J; Tecchio S; Sime-Ngando T; Niquil N ISME J; 2018 Apr; 12(4):1008-1020. PubMed ID: 29416126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]