BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28800965)

  • 1. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway.
    Zhu X; Zhao D; Qiu H; Fan F; Man S; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):37-45. PubMed ID: 28800965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium.
    Abdelaal AS; Jawed K; Yazdani SS
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):965-975. PubMed ID: 30982114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli.
    Feng X; Zhao D; Zhang X; Ding X; Bi C
    Biotechnol J; 2018 Sep; 13(9):e1700604. PubMed ID: 29790644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency.
    Xie Q; Li S; Zhao D; Ye L; Li Q; Zhang X; Zhu L; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):229. PubMed ID: 33317552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardized Iterative Genome Editing Method for
    Fang H; Zhao J; Zhao X; Dong N; Zhao Y; Zhang D
    ACS Synth Biol; 2024 Feb; 13(2):613-623. PubMed ID: 38243901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.
    Li Y; Lin Z; Huang C; Zhang Y; Wang Z; Tang YJ; Chen T; Zhao X
    Metab Eng; 2015 Sep; 31():13-21. PubMed ID: 26141150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway.
    Alonso-Gutierrez J; Koma D; Hu Q; Yang Y; Chan LJG; Petzold CJ; Adams PD; Vickers CE; Nielsen LK; Keasling JD; Lee TS
    Biotechnol Bioeng; 2018 Apr; 115(4):1000-1013. PubMed ID: 29278415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars.
    Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL
    Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli.
    Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK
    Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.
    Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X
    Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing.
    Lauritsen I; Porse A; Sommer MOA; Nørholm MHH
    Microb Cell Fact; 2017 Aug; 16(1):135. PubMed ID: 28764701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.