These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28801050)
1. Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. Watson C; Niks D; Hille R; Vieira M; Schoepp-Cothenet B; Marques AT; Romão MJ; Santos-Silva T; Santini JM Biochim Biophys Acta Bioenerg; 2017 Oct; 1858(10):865-872. PubMed ID: 28801050 [TBL] [Abstract][Full Text] [Related]
2. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. Warelow TP; Oke M; Schoepp-Cothenet B; Dahl JU; Bruselat N; Sivalingam GN; Leimkühler S; Thalassinos K; Kappler U; Naismith JH; Santini JM PLoS One; 2013; 8(8):e72535. PubMed ID: 24023621 [TBL] [Abstract][Full Text] [Related]
3. The structure of the complex between the arsenite oxidase from Pseudorhizobium banfieldiae sp. strain NT-26 and its native electron acceptor cytochrome c Poddar N; Santini JM; Maher MJ Acta Crystallogr D Struct Biol; 2023 Apr; 79(Pt 4):345-352. PubMed ID: 36995233 [TBL] [Abstract][Full Text] [Related]
4. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. vanden Hoven RN; Santini JM Biochim Biophys Acta; 2004 Jun; 1656(2-3):148-55. PubMed ID: 15178476 [TBL] [Abstract][Full Text] [Related]
5. Electrochemically driven catalysis of Rhizobium sp. NT-26 arsenite oxidase with its native electron acceptor cytochrome c552. Kalimuthu P; Heath MD; Santini JM; Kappler U; Bernhardt PV Biochim Biophys Acta; 2014 Jan; 1837(1):112-20. PubMed ID: 23891971 [TBL] [Abstract][Full Text] [Related]
6. The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily. Duval S; Santini JM; Nitschke W; Hille R; Schoepp-Cothenet B J Biol Chem; 2010 Jul; 285(27):20442-51. PubMed ID: 20421651 [TBL] [Abstract][Full Text] [Related]
8. The NT-26 cytochrome c552 and its role in arsenite oxidation. Santini JM; Kappler U; Ward SA; Honeychurch MJ; vanden Hoven RN; Bernhardt PV Biochim Biophys Acta; 2007 Feb; 1767(2):189-96. PubMed ID: 17306216 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Ellis PJ; Conrads T; Hille R; Kuhn P Structure; 2001 Feb; 9(2):125-32. PubMed ID: 11250197 [TBL] [Abstract][Full Text] [Related]
10. Functional flexibility of electron flow between quinol oxidation Q Borek A; Ekiert R; Osyczka A Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394 [TBL] [Abstract][Full Text] [Related]
11. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Duquesne K; Lieutaud A; Ratouchniak J; Muller D; Lett MC; Bonnefoy V Environ Microbiol; 2008 Jan; 10(1):228-37. PubMed ID: 17894815 [TBL] [Abstract][Full Text] [Related]
12. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. Anderson GL; Williams J; Hille R J Biol Chem; 1992 Nov; 267(33):23674-82. PubMed ID: 1331097 [TBL] [Abstract][Full Text] [Related]
13. Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Male KB; Hrapovic S; Santini JM; Luong JH Anal Chem; 2007 Oct; 79(20):7831-7. PubMed ID: 17874847 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Hoke KR; Cobb N; Armstrong FA; Hille R Biochemistry; 2004 Feb; 43(6):1667-74. PubMed ID: 14769044 [TBL] [Abstract][Full Text] [Related]
15. Cold-adapted arsenite oxidase from a psychrotolerant Polaromonas species. Osborne TH; Heath MD; Martin AC; Pankowski JA; Hudson-Edwards KA; Santini JM Metallomics; 2013 Apr; 5(4):318-24. PubMed ID: 23150098 [TBL] [Abstract][Full Text] [Related]
17. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Slyemi D; Moinier D; Talla E; Bonnefoy V Extremophiles; 2013 Nov; 17(6):911-20. PubMed ID: 23974983 [TBL] [Abstract][Full Text] [Related]
18. Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. Boll M; Fuchs G; Meier C; Trautwein A; El Kasmi A; Ragsdale SW; Buchanan G; Lowe DJ J Biol Chem; 2001 Dec; 276(51):47853-62. PubMed ID: 11602591 [TBL] [Abstract][Full Text] [Related]
19. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Rhine ED; Ní Chadhain SM; Zylstra GJ; Young LY Biochem Biophys Res Commun; 2007 Mar; 354(3):662-7. PubMed ID: 17257587 [TBL] [Abstract][Full Text] [Related]
20. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans. Moinier D; Slyemi D; Byrne D; Lignon S; Lebrun R; Talla E; Bonnefoy V Appl Environ Microbiol; 2014 Oct; 80(20):6413-26. PubMed ID: 25107975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]