BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28801063)

  • 1. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.
    Takeda A; Okada S; Funakoshi K
    Brain Res; 2017 Oct; 1673():23-29. PubMed ID: 28801063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord.
    Takeda A; Atobe Y; Kadota T; Goris RC; Funakoshi K
    Neuroscience; 2015 Jan; 284():134-152. PubMed ID: 25290012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of matrix metalloproteinases during axonal regeneration in the goldfish spinal cord.
    Takeda A; Kanemura A; Funakoshi K
    J Chem Neuroanat; 2021 Dec; 118():102041. PubMed ID: 34774721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of 5HT receptors during the regeneration process after spinal cord transection in goldfish.
    Takeda A; Fujita M; Funakoshi K
    J Chem Neuroanat; 2023 Sep; 131():102281. PubMed ID: 37119932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site.
    Li HP; Homma A; Sango K; Kawamura K; Raisman G; Kawano H
    J Neurosci Res; 2007 Feb; 85(3):536-47. PubMed ID: 17154415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain.
    Li HP; Komuta Y; Kimura-Kuroda J; van Kuppevelt TH; Kawano H
    J Neurotrauma; 2013 Mar; 30(5):413-25. PubMed ID: 23438307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury.
    Andrews EM; Richards RJ; Yin FQ; Viapiano MS; Jakeman LB
    Exp Neurol; 2012 May; 235(1):174-87. PubMed ID: 21952042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord regeneration.
    Young W
    Cell Transplant; 2014; 23(4-5):573-611. PubMed ID: 24816452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondroitin Sulfate Expression in Perineuronal Nets After Goldfish Spinal Cord Lesion.
    Takeda A; Shuto M; Funakoshi K
    Front Cell Neurosci; 2018; 12():63. PubMed ID: 29662439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse mast cell protease 4 suppresses scar formation after traumatic spinal cord injury.
    Vangansewinkel T; Lemmens S; Geurts N; Quanten K; Dooley D; Pejler G; Hendrix S
    Sci Rep; 2019 Mar; 9(1):3715. PubMed ID: 30842526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.
    Wang L; Yu C; Wang J; Zhao H; Chan SO
    Neurosci Lett; 2017 Aug; 655():61-67. PubMed ID: 28689049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats.
    Xia Y; Zhao T; Li J; Li L; Hu R; Hu S; Feng H; Lin J
    Biochem Biophys Res Commun; 2008 Dec; 377(2):562-566. PubMed ID: 18930033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC.
    Yick LW; Cheung PT; So KF; Wu W
    Exp Neurol; 2003 Jul; 182(1):160-8. PubMed ID: 12821386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair.
    Shechter R; Raposo C; London A; Sagi I; Schwartz M
    PLoS One; 2011; 6(12):e27969. PubMed ID: 22205935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited growth of severed CNS axons after treatment of adult rat brain with hyaluronidase.
    Moon LD; Asher RA; Fawcett JW
    J Neurosci Res; 2003 Jan; 71(1):23-37. PubMed ID: 12478611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondroitin-4-sulfation negatively regulates axonal guidance and growth.
    Wang H; Katagiri Y; McCann TE; Unsworth E; Goldsmith P; Yu ZX; Tan F; Santiago L; Mills EM; Wang Y; Symes AJ; Geller HM
    J Cell Sci; 2008 Sep; 121(Pt 18):3083-91. PubMed ID: 18768934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.