These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28801246)

  • 1. Time-optimal control strategies in SIR epidemic models.
    Bolzoni L; Bonacini E; Soresina C; Groppi M
    Math Biosci; 2017 Oct; 292():86-96. PubMed ID: 28801246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal control of epidemic size and duration with limited resources.
    Bolzoni L; Bonacini E; Della Marca R; Groppi M
    Math Biosci; 2019 Sep; 315():108232. PubMed ID: 31330135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies.
    Bolzoni L; Della Marca R; Groppi M
    J Math Biol; 2021 Sep; 83(4):36. PubMed ID: 34550465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control measures.
    Hayama Y; Yamamoto T; Kobayashi S; Muroga N; Tsutsui T
    Prev Vet Med; 2013 Nov; 112(3-4):183-93. PubMed ID: 24034814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal isolation strategies of emerging infectious diseases with limited resources.
    Zhou Y; Wu J; Wu M
    Math Biosci Eng; 2013; 10(5-6):1691-701. PubMed ID: 24245629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control of epidemics with limited resources.
    Hansen E; Day T
    J Math Biol; 2011 Mar; 62(3):423-51. PubMed ID: 20407775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control for SIRC epidemic outbreak.
    Iacoviello D; Stasio N
    Comput Methods Programs Biomed; 2013 Jun; 110(3):333-42. PubMed ID: 23399104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of epidemics in contact networks through optimal contact adaptation.
    Youssef M; Scoglio C
    Math Biosci Eng; 2013 Aug; 10(4):1227-51. PubMed ID: 23906209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decision-tree to optimise control measures during the early stage of a foot-and-mouth disease epidemic.
    Tomassen FH; de Koeijer A; Mourits MC; Dekker A; Bouma A; Huirne RB
    Prev Vet Med; 2002 Aug; 54(4):301-24. PubMed ID: 12163248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Regional Control of a Reaction-Diffusion System SIR.
    El Alami Laaroussi A; Rachik M
    Bull Math Biol; 2019 Dec; 82(1):5. PubMed ID: 31919593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Allocation of Vaccine and Antiviral Drugs for Influenza Containment over Delayed Multiscale Epidemic Model considering Time-Dependent Transmission Rate.
    Abbasi Z; Zamani I; Amiri Mehra AH; Ibeas A; Shafieirad M
    Comput Math Methods Med; 2021; 2021():4348910. PubMed ID: 34707682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccination against foot-and-mouth disease I: epidemiological consequences.
    Backer JA; Hagenaars TJ; Nodelijk G; van Roermund HJ
    Prev Vet Med; 2012 Nov; 107(1-2):27-40. PubMed ID: 22749763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply.
    Chen Z; Liu K; Liu X; Lou Y
    J Theor Biol; 2020 Feb; 486():110085. PubMed ID: 31758966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential impact of species and livestock density on the epidemic size and effectiveness of control measures for foot-and-mouth disease in Japan.
    Hayama Y; Yamamoto T; Kobayashi S; Muroga N; Tsutsui T
    J Vet Med Sci; 2016 Jan; 78(1):13-22. PubMed ID: 26256043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal vaccination in a stochastic epidemic model of two non-interacting populations.
    Yuan EC; Alderson DL; Stromberg S; Carlson JM
    PLoS One; 2015; 10(2):e0115826. PubMed ID: 25688857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. React or wait: which optimal culling strategy to control infectious diseases in wildlife.
    Bolzoni L; Tessoni V; Groppi M; De Leo GA
    J Math Biol; 2014 Oct; 69(4):1001-25. PubMed ID: 24057080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak.
    Mondal J; Khajanchi S
    Nonlinear Dyn; 2022; 109(1):177-202. PubMed ID: 35125654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal control for a SIR epidemic model with limited quarantine.
    Balderrama R; Peressutti J; Pinasco JP; Vazquez F; Vega CS
    Sci Rep; 2022 Jul; 12(1):12583. PubMed ID: 35869150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different control strategies for foot-and-mouth disease: a study of the epidemics in Canada in 1951/52, Hampshire in 1967 and Northumberland in 1966.
    Sellers RF
    Vet Rec; 2006 Jan; 158(1):9. PubMed ID: 16400097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.