BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28801604)

  • 1. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette.
    Huang Y; Li L; Xie S; Zhao N; Han S; Lin Y; Zheng S
    Sci Rep; 2017 Aug; 7(1):7916. PubMed ID: 28801604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker.
    Ma W; Wang X; Mao Y; Wang Z; Chen T; Zhao X
    Biotechnol Lett; 2015 Mar; 37(3):609-17. PubMed ID: 25376333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of RecET-Cre/loxP system in Corynebacterium glutamicum ATCC14067 for L-leucine production.
    Luo G; Zhao N; Jiang S; Zheng S
    Biotechnol Lett; 2021 Jan; 43(1):297-306. PubMed ID: 32936374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing recombineering in Corynebacterium glutamicum.
    Li C; Swofford CA; Rückert C; Sinskey AJ
    Biotechnol Bioeng; 2021 Jun; 118(6):2255-2264. PubMed ID: 33650120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
    Hu J; Tan Y; Li Y; Hu X; Xu D; Wang X
    Plasmid; 2013 Nov; 70(3):303-13. PubMed ID: 23856168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy.
    Lobanova JS; Gorshkova NV; Krylov AA; Stoynova NV; Mashko SV
    J Microbiol Methods; 2022 Sep; 200():106555. PubMed ID: 35944822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
    Cho JS; Choi KR; Prabowo CPS; Shin JH; Yang D; Jang J; Lee SY
    Metab Eng; 2017 Jul; 42():157-167. PubMed ID: 28649005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation.
    Binder S; Siedler S; Marienhagen J; Bott M; Eggeling L
    Nucleic Acids Res; 2013 Jul; 41(12):6360-9. PubMed ID: 23630315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of phage recombinase function unit in genus Corynebacterium.
    Chang Y; Wang Q; Su T; Qi Q
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5067-5075. PubMed ID: 34131780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homing endonuclease I-SceI-mediated Corynebacterium glutamicum ATCC 13032 genome engineering.
    Wu M; Xu Y; Yang J; Shang G
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3597-3609. PubMed ID: 32146493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence.
    Suzuki N; Nonaka H; Tsuge Y; Inui M; Yukawa H
    Appl Environ Microbiol; 2005 Dec; 71(12):8472-80. PubMed ID: 16332837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mu-driven transposition of recombinant mini-Mu unit DNA in the Corynebacterium glutamicum chromosome.
    Gorshkova NV; Lobanova JS; Tokmakova IL; Smirnov SV; Akhverdyan VZ; Krylov AA; Mashko SV
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2867-2884. PubMed ID: 29392386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum.
    Suzuki N; Tsuge Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2005 Apr; 67(2):225-33. PubMed ID: 15834716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway.
    Mormann S; Lömker A; Rückert C; Gaigalat L; Tauch A; Pühler A; Kalinowski J
    BMC Genomics; 2006 Aug; 7():205. PubMed ID: 16901339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
    Baumgart M; Unthan S; Rückert C; Sivalingam J; Grünberger A; Kalinowski J; Bott M; Noack S; Frunzke J
    Appl Environ Microbiol; 2013 Oct; 79(19):6006-15. PubMed ID: 23892752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum.
    Kim IK; Jeong WK; Lim SH; Hwang IK; Kim YH
    J Microbiol Methods; 2011 Jan; 84(1):128-30. PubMed ID: 20951172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.