BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28801647)

  • 21. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium.
    Barshan S; Rezazadeh-Bari M; Almasi H; Amiri S
    Int J Biol Macromol; 2019 Sep; 136():1188-1195. PubMed ID: 31252013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.
    Güzel M; Akpınar Ö
    Int J Biol Macromol; 2020 Nov; 162():1597-1604. PubMed ID: 32777420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Knockdown of motility-related genes of
    Liu J; Wang X; Peng Z; Xin B; Zhong C
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1856-1867. PubMed ID: 38914496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.
    Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
    Ryngajłło M; Jędrzejczak-Krzepkowska M; Kubiak K; Ludwicka K; Bielecki S
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6565-6585. PubMed ID: 32529377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.
    Molina-Ramírez C; Enciso C; Torres-Taborda M; Zuluaga R; Gañán P; Rojas OJ; Castro C
    Int J Biol Macromol; 2018 Oct; 117():735-741. PubMed ID: 29847783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis.
    Lu T; Gao H; Liao B; Wu J; Zhang W; Huang J; Liu M; Huang J; Chang Z; Jin M; Yi Z; Jiang D
    Carbohydr Polym; 2020 Mar; 232():115788. PubMed ID: 31952596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber.
    Jang WD; Kim TY; Kim HU; Shim WY; Ryu JY; Park JH; Lee SY
    Biotechnol Bioeng; 2019 Dec; 116(12):3372-3381. PubMed ID: 31433066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436
    Gorgieva S; Jančič U; Cepec E; Trček J
    Int J Biol Macromol; 2023 Jul; 244():125368. PubMed ID: 37330080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of a scalable bioprocess platform for bacterial cellulose production.
    Basu A; Vadanan SV; Lim S
    Carbohydr Polym; 2019 Mar; 207():684-693. PubMed ID: 30600054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte.
    Sangta J; Ruksiriwanich W; Chittasupho C; Sringarm K; Rachtanapun P; Bakshani C; Willats W; Sommano S
    Prep Biochem Biotechnol; 2024 May; 54(5):587-596. PubMed ID: 37747818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial cellulose as an example product for sustainable production and consumption.
    Jang WD; Hwang JH; Kim HU; Ryu JY; Lee SY
    Microb Biotechnol; 2017 Sep; 10(5):1181-1185. PubMed ID: 28695653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing bacterial cellulose production of
    Fei S; Fu M; Kang J; Luo J; Wang Y; Jia J; Liu S; Li C
    Curr Res Food Sci; 2024; 8():100761. PubMed ID: 38774267
    [No Abstract]   [Full Text] [Related]  

  • 39. Bacterial Cellulose Production from agricultural Residues by two
    Akintunde MO; Adebayo-Tayo BC; Ishola MM; Zamani A; Horváth IS
    Bioengineered; 2022 Apr; 13(4):10010-10025. PubMed ID: 35416127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.