These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28801907)

  • 1. Light-Responsive Promoters.
    Hörner M; Müller K; Weber W
    Methods Mol Biol; 2017; 1651():173-186. PubMed ID: 28801907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Synthetic Promoters for Gene Circuits in Mammalian Cells.
    Saxena P; Bojar D; Fussenegger M
    Methods Mol Biol; 2017; 1651():263-273. PubMed ID: 28801913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells.
    Chatelle C; Ochoa-Fernandez R; Engesser R; Schneider N; Beyer HM; Jones AR; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2018 May; 7(5):1349-1358. PubMed ID: 29634242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optogenetic upgrade for the Tet-OFF system.
    Müller K; Zurbriggen MD; Weber W
    Biotechnol Bioeng; 2015 Jul; 112(7):1483-7. PubMed ID: 25683779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal optogenetic triple-gene control in Mammalian cells.
    Müller K; Engesser R; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2014 Nov; 3(11):796-801. PubMed ID: 25343333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells.
    Mansouri M; Lichtenstein S; Strittmatter T; Buchmann P; Fussenegger M
    Methods Mol Biol; 2020; 2173():189-199. PubMed ID: 32651919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promoter of the rat gonadotropin-releasing hormone receptor gene directs the expression of the human placental alkaline phosphatase reporter gene in gonadotrope cells in the anterior pituitary gland as well as in multiple extrapituitary tissues.
    Granger A; Ngô-Muller V; Bleux C; Guigon C; Pincas H; Magre S; Daegelen D; Tixier-Vidal A; Counis R; Laverrière JN
    Endocrinology; 2004 Feb; 145(2):983-93. PubMed ID: 14592958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetics for gene expression in mammalian cells.
    Müller K; Naumann S; Weber W; Zurbriggen MD
    Biol Chem; 2015 Feb; 396(2):145-52. PubMed ID: 25153239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Light-Controlled Gene Switch for Mammalian and Plant Cells.
    Schneider N; Chatelle CV; Ochoa-Fernandez R; Zurbriggen MD; Weber W
    Methods Mol Biol; 2021; 2312():89-107. PubMed ID: 34228286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward higher order control modalities in mammalian cells-independent adjustment of two different gene activities.
    Fux C; Fussenegger M
    Biotechnol Prog; 2003; 19(1):109-20. PubMed ID: 12573013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward construction of a self-sustained clock-like expression system based on the mammalian circadian clock.
    Chilov D; Fussenegger M
    Biotechnol Bioeng; 2004 Jul; 87(2):234-42. PubMed ID: 15236253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mammalian cell clones exhibiting highly regulated expression from inducible promoters.
    Kirchhoff S; Köster M; Wirth M; Schaper F; Gossen M; Bujard H; Hauser H
    Trends Genet; 1995 Jun; 11(6):219-20. PubMed ID: 7638903
    [No Abstract]   [Full Text] [Related]  

  • 14. Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
    Binder D; Frohwitter J; Mahr R; Bier C; Grünberger A; Loeschcke A; Peters-Wendisch P; Kohlheyer D; Pietruszka J; Frunzke J; Jaeger KE; Wendisch VF; Drepper T
    Appl Environ Microbiol; 2016 Oct; 82(20):6141-6149. PubMed ID: 27520809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and construction of synthetic gene networks in mammalian cells.
    Karlsson M; Weber W; Fussenegger M
    Methods Mol Biol; 2012; 813():359-76. PubMed ID: 22083754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible gene expression in mammalian cells and mice.
    Weber W; Fussenegger M
    Methods Mol Biol; 2004; 267():451-66. PubMed ID: 15269442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice.
    Ye H; Daoud-El Baba M; Peng RW; Fussenegger M
    Science; 2011 Jun; 332(6037):1565-8. PubMed ID: 21700876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of secreted alkaline phosphatase as a reporter of gene expression in mammalian cells.
    Kain SR
    Methods Mol Biol; 1997; 63():49-60. PubMed ID: 9113640
    [No Abstract]   [Full Text] [Related]  

  • 20. Light-mediated control of Gene expression in mammalian cells.
    Yamada M; Nagasaki SC; Ozawa T; Imayoshi I
    Neurosci Res; 2020 Mar; 152():66-77. PubMed ID: 31923448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.