These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28802101)

  • 1. Flexible biodegradable citrate-based polymeric step-index optical fiber.
    Shan D; Zhang C; Kalaba S; Mehta N; Kim GB; Liu Z; Yang J
    Biomaterials; 2017 Oct; 143():142-148. PubMed ID: 28802101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective for biodegradable microstructured optical fibers.
    Dupuis A; Guo N; Gao Y; Godbout N; Lacroix S; Dubois C; Skorobogatiy M
    Opt Lett; 2007 Jan; 32(2):109-11. PubMed ID: 17186033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review.
    Wang Y; Huang Y; Bai H; Wang G; Hu X; Kumar S; Min R
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.
    Du Y; Yu M; Chen X; Ma PX; Lei B
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3079-91. PubMed ID: 26765285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering.
    Li J; Zheng W; Pan P; Sun X; Zhang Y
    Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Citric-acid-derived photo-cross-linked biodegradable elastomers.
    Gyawali D; Tran RT; Guleserian KJ; Tang L; Yang J
    J Biomater Sci Polym Ed; 2010; 21(13):1761-82. PubMed ID: 20557687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential.
    Li Y; Li N; Ge J; Xue Y; Niu W; Chen M; Du Y; Ma PX; Lei B
    Biomaterials; 2019 May; 201():68-76. PubMed ID: 30798021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers.
    Zhang Y; Tran RT; Qattan IS; Tsai YT; Tang L; Liu C; Yang J
    Biomaterials; 2013 May; 34(16):4048-4056. PubMed ID: 23465824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine.
    Nazempour R; Zhang Q; Fu R; Sheng X
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30044416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable elastomers for biomedical applications and regenerative medicine.
    Bat E; Zhang Z; Feijen J; Grijpma DW; Poot AA
    Regen Med; 2014 May; 9(3):385-98. PubMed ID: 24935047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of slot waveguide sensors based on polymeric materials.
    Bettotti P; Pitanti A; Rigo E; De Leonardis F; Passaro VM; Pavesi L
    Sensors (Basel); 2011; 11(8):7327-40. PubMed ID: 22164020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication strategies and potential applications of the "green" microstructured optical fibers.
    Dupuis A; Guo N; Gao Y; Skorobogata O; Gauvreau B; Dubois C; Skorobogatiy M
    J Biomed Opt; 2008; 13(5):054003. PubMed ID: 19021383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Click chemistry plays a dual role in biodegradable polymer design.
    Guo J; Xie Z; Tran RT; Xie D; Jin D; Bai X; Yang J
    Adv Mater; 2014 Mar; 26(12):1906-11. PubMed ID: 24375469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications.
    Gierej A; Geernaert T; Van Vlierberghe S; Dubruel P; Thienpont H; Berghmans F
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications.
    Kenry ; Liu B
    Biomacromolecules; 2018 Jun; 19(6):1783-1803. PubMed ID: 29787260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical interconnection for a polymeric PLC device using simple positional alignment.
    Ryu JH; Kim PJ; Cho CS; Lee el-H; Kim CS; Jeong MY
    Opt Express; 2011 Apr; 19(9):8571-9. PubMed ID: 21643108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand.
    Wan L; Lu L; Liang X; Liu Z; Huang X; Du R; Luo Q; Xu Q; Zhang Q; Jia X
    Biomacromolecules; 2023 Sep; 24(9):4123-4137. PubMed ID: 37584644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.