BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28802249)

  • 1. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.
    Rosa-Garrido M; Chapski DJ; Schmitt AD; Kimball TH; Karbassi E; Monte E; Balderas E; Pellegrini M; Shih TT; Soehalim E; Liem D; Ping P; Galjart NJ; Ren S; Wang Y; Ren B; Vondriska TM
    Circulation; 2017 Oct; 136(17):1613-1625. PubMed ID: 28802249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart.
    Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M
    J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes.
    Monte E; Mouillesseaux K; Chen H; Kimball T; Ren S; Wang Y; Chen JN; Vondriska TM; Franklin S
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1624-38. PubMed ID: 24077883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response.
    Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS
    Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.
    Franklin S; Kimball T; Rasmussen TL; Rosa-Garrido M; Chen H; Tran T; Miller MR; Gray R; Jiang S; Ren S; Wang Y; Tucker HO; Vondriska TM
    Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1234-H1247. PubMed ID: 27663768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION.
    Monte E; Rosa-Garrido M; Karbassi E; Chen H; Lopez R; Rau CD; Wang J; Nelson SF; Wu Y; Stefani E; Lusis AJ; Wang Y; Kurdistani SK; Franklin S; Vondriska TM
    J Biol Chem; 2016 Jul; 291(30):15428-46. PubMed ID: 27226577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The scaffold protein muscle A-kinase anchoring protein β orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure.
    Kritzer MD; Li J; Passariello CL; Gayanilo M; Thakur H; Dayan J; Dodge-Kafka K; Kapiloff MS
    Circ Heart Fail; 2014 Jul; 7(4):663-72. PubMed ID: 24812305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure.
    Li J; Tan Y; Passariello CL; Martinez EC; Kritzer MD; Li X; Li X; Li Y; Yu Q; Ohgi K; Thakur H; MacArthur JW; Ivey JR; Woo YJ; Emter CA; Dodge-Kafka K; Rosenfeld MG; Kapiloff MS
    Circulation; 2020 Dec; 142(22):2138-2154. PubMed ID: 32933333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts.
    Pei J; Harakalova M; Treibel TA; Lumbers RT; Boukens BJ; Efimov IR; van Dinter JT; González A; López B; El Azzouzi H; van den Dungen N; van Dijk CGM; Krebber MM; den Ruijter HM; Pasterkamp G; Duncker DJ; Nieuwenhuis EES; de Weger R; Huibers MM; Vink A; Moore JH; Moon JC; Verhaar MC; Kararigas G; Mokry M; Asselbergs FW; Cheng C
    Clin Epigenetics; 2020 Jul; 12(1):106. PubMed ID: 32664951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture.
    McKinsey TA; Vondriska TM; Wang Y
    F1000Res; 2018; 7():. PubMed ID: 30416708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syndecan-4 deficiency accelerates the transition from compensated hypertrophy to heart failure following pressure overload.
    Li G; Xie J; Chen J; Li R; Wu H; Zhang X; Chen Q; Gu R; Xu B
    Cardiovasc Pathol; 2017; 28():74-79. PubMed ID: 28395201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Principles of Chromatin Architecture Associated With Organ-Specific Gene Regulation.
    Chapski DJ; Rosa-Garrido M; Hua N; Alber F; Vondriska TM
    Front Cardiovasc Med; 2018; 5():186. PubMed ID: 30697540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INO80-Dependent Remodeling of Transcriptional Regulatory Network Underlies the Progression of Heart Failure.
    Ren Z; Zhao W; Li D; Yu P; Mao L; Zhao Q; Yao L; Zhang X; Liu Y; Zhou B; Wang L
    Circulation; 2024 Apr; 149(14):1121-1138. PubMed ID: 38152931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BET bromodomains mediate transcriptional pause release in heart failure.
    Anand P; Brown JD; Lin CY; Qi J; Zhang R; Artero PC; Alaiti MA; Bullard J; Alazem K; Margulies KB; Cappola TP; Lemieux M; Plutzky J; Bradner JE; Haldar SM
    Cell; 2013 Aug; 154(3):569-82. PubMed ID: 23911322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure overload inhibits glucocorticoid receptor transcriptional activity in cardiomyocytes and promotes pathological cardiac hypertrophy.
    Matsuhashi T; Endo J; Katsumata Y; Yamamoto T; Shimizu N; Yoshikawa N; Kataoka M; Isobe S; Moriyama H; Goto S; Fukuda K; Tanaka H; Sano M
    J Mol Cell Cardiol; 2019 May; 130():122-130. PubMed ID: 30946837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling.
    Karbassi E; Rosa-Garrido M; Chapski DJ; Wu Y; Ren S; Wang Y; Stefani E; Vondriska TM
    J Mol Cell Cardiol; 2019 Mar; 128():198-211. PubMed ID: 30742811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long Noncoding RNA
    Yu J; Yang Y; Xu Z; Lan C; Chen C; Li C; Chen Z; Yu C; Xia X; Liao Q; Jose PA; Zeng C; Wu G
    Circ Heart Fail; 2020 Jan; 13(1):e006525. PubMed ID: 31957467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction.
    Tsika RW; Ma L; Kehat I; Schramm C; Simmer G; Morgan B; Fine DM; Hanft LM; McDonald KS; Molkentin JD; Krenz M; Yang S; Ji J
    J Biol Chem; 2010 Apr; 285(18):13721-35. PubMed ID: 20194497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance.
    Jost D; Vaillant C
    Nucleic Acids Res; 2018 Mar; 46(5):2252-2264. PubMed ID: 29365171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.