These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28802404)

  • 21. Targeting tuberculosis: a glimpse of promising drug targets.
    Arora N; Banerjee AK
    Mini Rev Med Chem; 2012 Mar; 12(3):187-201. PubMed ID: 22356190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New tuberculosis drugs on the horizon.
    Cole ST; Riccardi G
    Curr Opin Microbiol; 2011 Oct; 14(5):570-6. PubMed ID: 21821466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycobacterium tuberculosis gyrase inhibitors as a new class of antitubercular drugs.
    Blanco D; Perez-Herran E; Cacho M; Ballell L; Castro J; González Del Río R; Lavandera JL; Remuiñán MJ; Richards C; Rullas J; Vázquez-Muñiz MJ; Woldu E; Zapatero-González MC; Angulo-Barturen I; Mendoza A; Barros D
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1868-75. PubMed ID: 25583730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-content imaging of Mycobacterium tuberculosis-infected macrophages: an in vitro model for tuberculosis drug discovery.
    Christophe T; Ewann F; Jeon HK; Cechetto J; Brodin P
    Future Med Chem; 2010 Aug; 2(8):1283-93. PubMed ID: 21426019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linking High-Throughput Screens to Identify MoAs and Novel Inhibitors of Mycobacterium tuberculosis Dihydrofolate Reductase.
    Santa Maria JP; Park Y; Yang L; Murgolo N; Altman MD; Zuck P; Adam G; Chamberlin C; Saradjian P; Dandliker P; Boshoff HIM; Barry CE; Garlisi C; Olsen DB; Young K; Glick M; Nickbarg E; Kutchukian PS
    ACS Chem Biol; 2017 Sep; 12(9):2448-2456. PubMed ID: 28806050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibiting Mycobacterium tuberculosis within and without.
    Cole ST
    Philos Trans R Soc Lond B Biol Sci; 2016 Nov; 371(1707):. PubMed ID: 27672155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery.
    Kigondu EM; Wasuna A; Warner DF; Chibale K
    Bioorg Med Chem; 2014 Aug; 22(16):4453-61. PubMed ID: 24997576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minding the gaps in tuberculosis research.
    Ekins S; Nuermberger EL; Freundlich JS
    Drug Discov Today; 2014 Sep; 19(9):1279-82. PubMed ID: 24993157
    [No Abstract]   [Full Text] [Related]  

  • 29. Development of new antituberculous drugs based on bacterial virulence factors interfering with host cytokine networks.
    Tomioka H; Tatano Y; Sano C; Shimizu T
    J Infect Chemother; 2011 Jun; 17(3):302-17. PubMed ID: 21243398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive dirty fragments: implications for tuberculosis drug discovery.
    Gopal P; Dick T
    Curr Opin Microbiol; 2014 Oct; 21():7-12. PubMed ID: 25078318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB
    J Med Chem; 2013 Oct; 56(20):7755-60. PubMed ID: 23927683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis.
    Ballell L; Bates RH; Young RJ; Alvarez-Gomez D; Alvarez-Ruiz E; Barroso V; Blanco D; Crespo B; Escribano J; González R; Lozano S; Huss S; Santos-Villarejo A; Martín-Plaza JJ; Mendoza A; Rebollo-Lopez MJ; Remuiñan-Blanco M; Lavandera JL; Pérez-Herran E; Gamo-Benito FJ; García-Bustos JF; Barros D; Castro JP; Cammack N
    ChemMedChem; 2013 Feb; 8(2):313-21. PubMed ID: 23307663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery and validation of new antitubercular compounds as potential drug leads and probes.
    Goldman RC; Laughon BE
    Tuberculosis (Edinb); 2009 Sep; 89(5):331-3. PubMed ID: 19716767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development.
    Nguyen L; Pieters J
    Annu Rev Pharmacol Toxicol; 2009; 49():427-53. PubMed ID: 19281311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advancements in the development of anti-tuberculosis drugs.
    Chetty S; Ramesh M; Singh-Pillay A; Soliman ME
    Bioorg Med Chem Lett; 2017 Feb; 27(3):370-386. PubMed ID: 28017531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of a Natural Product That Binds to the
    Elnaas AR; Grice D; Han J; Feng Y; Capua AD; Mak T; Laureanti JA; Buchko GW; Myler PJ; Cook G; Quinn RJ; Liu M
    Molecules; 2020 May; 25(10):. PubMed ID: 32455540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery.
    Ekins S; Freundlich JS; Hobrath JV; Lucile White E; Reynolds RC
    Pharm Res; 2014 Feb; 31(2):414-35. PubMed ID: 24132686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of new anti-tuberculosis drug candidates.
    Shi R; Sugawara I
    Tohoku J Exp Med; 2010 Jun; 221(2):97-106. PubMed ID: 20467231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-guided small molecule antimycobacterials.
    Kulkarni A; Sharma AK; Chakrapani H
    IUBMB Life; 2018 Sep; 70(9):826-835. PubMed ID: 29761645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.
    Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R
    Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.